Visible to the public Biblio

Filters: Keyword is network routing  [Clear All Filters]
2020-05-15
Ascia, Giuseppe, Catania, Vincenzo, Monteleone, Salvatore, Palesi, Maurizio, Patti, Davide, Jose, John.  2019.  Networks-on-Chip based Deep Neural Networks Accelerators for IoT Edge Devices. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :227—234.
The need for performing deep neural network inferences on resource-constrained embedded devices (e.g., Internet of Things nodes) requires specialized architectures to achieve the best trade-off among performance, energy, and cost. One of the most promising architectures in this context is based on massive parallel and specialized cores interconnected by means of a Network-on-Chip (NoC). In this paper, we extensively evaluate NoC-based deep neural network accelerators by exploring the design space spanned by several architectural parameters including, network size, routing algorithm, local memory size, link width, and number of memory interfaces. We show how latency is mainly dominated by the on-chip communication whereas energy consumption is mainly accounted by memory (both on-chip and off-chip). The outcome of the analysis, thus, pushes toward a research line devoted to the optimization of the on-chip communication fabric and the memory subsystem for performance improvement and energy efficiency, respectively.
Fan, Renshi, Du, Gaoming, Xu, Pengfei, Li, Zhenmin, Song, Yukun, Zhang, Duoli.  2019.  An Adaptive Routing Scheme Based on Q-learning and Real-time Traffic Monitoring for Network-on-Chip. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :244—248.
In the Network on Chip (NoC), performance optimization has always been a research focus. Compared with the static routing scheme, dynamical routing schemes can better reduce the data of packet transmission latency under network congestion. In this paper, we propose a dynamical Q-learning routing approach with real-time monitoring of NoC. Firstly, we design a real-time monitoring scheme and the corresponding circuits to record the status of traffic congestion for NoC. Secondly, we propose a novel method of Q-learning. This method finds an optimal path based on the lowest traffic congestion. Finally, we dynamically redistribute network tasks to increase the packet transmission speed and balance the traffic load. Compared with the C-XY routing and DyXY routing, our method achieved improvement in terms of 25.6%-49.5% and 22.9%-43.8%.
Krishnamoorthy, Raja, Kalaivaani, P.T., Jackson, Beulah.  2019.  Test methodology for detecting short-channel faults in network on- chip networks using IOT. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA). :1406—1417.
The NOC Network on chip provides better performance and scalability communication structures point-to-point signal node, shared through bus architecture. Information analysis of method using the IOT termination, as the energy consumed in this regard reduces and reduces the network load but it also displays safety concerns because the valuation data is stored or transmitted to the network in various stages of the node. Using encryption to protect data on the area of network-on-chip Analysis Machine is a way to solve data security issues. We propose a Network on chip based on a combined multicore cluster with special packages for computing-intensive data processing and encryption functionality and support for software, in a tight power envelope for analyzing and coordinating integrated encryption. Programming for regular computing tasks is the challenge of efficient and secure data analysis for IOT end-end applications while providing full-functionality with high efficiency and low power to satisfy the needs of multiple processing applications. Applications provide a substantial parallel, so they can also use NOC's ability. Applications must compose in. This system controls the movement of the packets through the network. As network on chip (NOC) systems become more prevalent in the processing unit. Routers and interconnection networks are the main components of NOC. This system controls the movement of packets over the network. Chip (NOC) networks are very backward for the network processing unit. Guides and Link Networks are critical elements of the NOC. Therefore, these areas require less access and power consumption, so we can better understand environmental and energy transactions. In this manner, a low-area and efficient NOC framework were proposed by removing virtual channels.
Biswas, Arnab Kumar.  2018.  Efficient Timing Channel Protection for Hybrid (Packet/Circuit-Switched) Network-on-Chip. IEEE Transactions on Parallel and Distributed Systems. 29:1044—1057.
Continuous development of Network-on-Chip (NoC) enables different types of applications to run efficiently in a Multiprocessor System-on-Chip (MP-SoC). Guaranteed service (GS) can be provided by circuit switching NoC and Best effort service (BES) can be provided by packet switching NoC. A hybrid NoC containing both packet and circuit switching, can provide both types of services to these different applications. But these different applications can be of different security levels and one application can interfere another application's timing characteristics during network transmission. Using this interference, a malicious application can extract secret information from higher security level flows (timing side channel) or two applications can communicate covertly violating the system's security policy (covert timing channel). We propose different mechanisms to protect hybrid routers from timing channel attacks. For design space exploration, we propose three timing channel secure hybrid routers viz. Separate Hybrid (SH), Combined with Separate interface Hybrid (CSH), and Combined Hybrid (CH) routers. Simulation results show that all three routers are secure from timing channel when compared to a conventional hybrid router. Synthesis results show that the area increments compared to a conventional hybrid router are only 7.63, 11.8, and 19.69 percent for SH, CSH, and CH routers respectively. Thus simulation and synthesis results prove the effectiveness of our proposed mechanisms with acceptable area overheads.
Sepulveda, Johanna, Aboul-Hassan, Damian, Sigl, Georg, Becker, Bernd, Sauer, Matthias.  2018.  Towards the formal verification of security properties of a Network-on-Chip router. 2018 IEEE 23rd European Test Symposium (ETS). :1—6.
pubcrawl, Network on Chip Security, Scalability, resiliency, resilience, metrics, Vulnerabilities and design flaws in Network-on-Chip (NoC) routers can be exploited in order to spy, modify and constraint the sensitive communication inside the Multi-Processors Systems-on-Chip (MPSoCs). Although previous works address the NoC threat, finding secure and efficient solutions to verify the security is still a challenge. In this work, we propose for the first time a method to formally verify the correctness and the security properties of a NoC router in order to provide the proper communication functionality and to avoid NoC attacks. We present a generalized verification flow that proves a wide set of implementation-independent security-related properties to hold. We employ unbounded model checking techniques to account for the highly-sequential behaviour of the NoC systems. The evaluation results demonstrate the feasibility of our approach by presenting verification results of six different NoC routing architectures demonstrating the vulnerabilities of each design.
2020-05-11
Poovendran, R, Billclinton., S, Darshan., R, Dinakar., R, Fazil., M.  2019.  Design and analysis of a mesh-based Adaptive Wireless Network-on Chips Architecture With Irregular Network Routing. 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). :1–6.
The metallic interface for between core messages expends wealth influence and lesser throughput which are huge in Network-on Chip (NoC) structures. We proposed a remote Network-on-Chip (NoC) building Wireless Network-on Chip that uses power and imperatives gainful remote handsets to improve higherenergy and throughput by altering channels as indicated by traffic plans. Our proposed computations uses interface use bits of knowledge to redispensreal platforms, and a vitality funds of 29-35%. Wireless channels and a token sharing arrangement to totally use the remote information transmission successfully. Remote/electrical topological with results demonstrates a through-put advancement of 69%, a speedup between 1.7-2.9X on real platform, and an power savings of 25-38%.
2019-11-04
Daoud, Luka, Rafla, Nader.  2018.  Routing Aware and Runtime Detection for Infected Network-on-Chip Routers. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :775-778.

Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.

2018-06-11
Rohmah, Y. N., Sudiharto, D. W., Herutomo, A..  2017.  The performance comparison of forwarding mechanism between IPv4 and Named Data Networking (NDN). Case study: A node compromised by the prefix hijack. 2017 3rd International Conference on Science in Information Technology (ICSITech). :302–306.

Named Data Networking (NDN) is a new network architecture design that led to the evolution of a network architecture based on data-centric. Questions have been raised about how to compare its performance with the old architecture such as IP network which is generally based on Internet Protocol version 4 (IPv4). Differs with the old one, source and destination addresses in the delivery of data are not required on the NDN network because the addresses function is replaced by a data name (Name) which serves to identify the data uniquely. In a computer network, a network routing is an essential factor to support data communication. The network routing on IP network relies only on Routing Information Base (RIB) derived from the IP table on the router. So that, if there is a problem on the network such as there is one node exposed to a dangerous attack, the IP router should wait until the IP table is updated, and then the routing channel is changed. The issue of how to change the routing path without updating IP table has received considerable critical attention. The NDN network has an advantage such as its capability to execute an adaptive forwarding mechanism, which FIB (Forwarding Information Base) of the NDN router keeps information for routing and forwarding planes. Therefore, if there is a problem on the network, the NDN router can detect the problem more quickly than the IP router. The contribution of this study is important to explain the benefit of the forwarding mechanism of the NDN network compared to the IP network forwarding mechanism when there is a node which is suffered a hijack attack.

Sepulveda, J., Fernandes, R., Marcon, C., Florez, D., Sigl, G..  2017.  A security-aware routing implementation for dynamic data protection in zone-based MPSoC. 2017 30th Symposium on Integrated Circuits and Systems Design (SBCCI). :59–64.
This work proposes a secure Network-on-Chip (NoC) approach, which enforces the encapsulation of sensitive traffic inside the asymmetrical security zones while using minimal and non-minimal paths. The NoC routing guarantees that the sensitive traffic communicates only through trusted nodes, which belong to a security zone. As the shape of the zones may change during operation, the sensitive traffic must be routed through low-risk paths. The experimental results show that this proposal can be an efficient and scalable alternative for enforcing the data protection inside a Multi-Processor System-on-Chip (MPSoC).
2018-05-09
Dridi, M., Rubini, S., Lallali, M., Florez, M. J. S., Singhoff, F., Diguet, J. P..  2017.  DAS: An Efficient NoC Router for Mixed-Criticality Real-Time Systems. 2017 IEEE International Conference on Computer Design (ICCD). :229–232.

Mixed-Criticality Systems (MCS) are real-time systems characterized by two or more distinct levels of criticality. In MCS, it is imperative that high-critical flows meet their deadlines while low critical flows can tolerate some delays. Sharing resources between flows in Network-On-Chip (NoC) can lead to different unpredictable latencies and subsequently complicate the implementation of MCS in many-core architectures. This paper proposes a new virtual channel router designed for MCS deployed over NoCs. The first objective of this router is to reduce the worst-case communication latency of high-critical flows. The second aim is to improve the network use rate and reduce the communication latency for low-critical flows. The proposed router, called DAS (Double Arbiter and Switching router), jointly uses Wormhole and Store And Forward techniques for low and high-critical flows respectively. Simulations with a cycle-accurate SystemC NoC simulator show that, with a 15% network use rate, the communication delay of high-critical flows is reduced by 80% while communication delay of low-critical flow is increased by 18% compared to usual solutions based on routers with multiple virtual channels.

2017-05-30
Karumanchi, Sushama, Li, Jingwei, Squicciarini, Anna.  2016.  Efficient Network Path Verification for Policy-routedQueries. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :319–328.

Resource discovery in unstructured peer-to-peer networks causes a search query to be flooded throughout the network via random nodes, leading to security and privacy issues. The owner of the search query does not have control over the transmission of its query through the network. Although algorithms have been proposed for policy-compliant query or data routing in a network, these algorithms mainly deal with authentic route computation and do not provide mechanisms to actually verify the network paths taken by the query. In this work, we propose an approach to deal with the problem of verifying network paths taken by a search query during resource discovery, and detection of malicious forwarding of search query. Our approach aims at being secure and yet very scalable, even in the presence of huge number of nodes in the network.