Biblio
Network-on-Chip (NoC) architecture is the communication heart of the processing cores in Multiprocessors System-on-Chip (MPSoC), where messages are routed from a source to a destination through intermediate nodes. Therefore, NoC has become a target to security attacks. By experiencing outsourcing design, NoC can be infected with a malicious Hardware Trojans (HTs) which potentially degrade the system performance or leave a backdoor for secret key leaking. In this paper, we propose a HT model that applies a denial of service attack by misrouting the packets, which causes deadlock and consequently degrading the NoC performance. We present a secure routing algorithm that provides a runtime HT detection and avoiding scheme. Results show that our proposed model has negligible overhead in area and power, 0.4% and 0.6%, respectively.
Named Data Networking (NDN) is a new network architecture design that led to the evolution of a network architecture based on data-centric. Questions have been raised about how to compare its performance with the old architecture such as IP network which is generally based on Internet Protocol version 4 (IPv4). Differs with the old one, source and destination addresses in the delivery of data are not required on the NDN network because the addresses function is replaced by a data name (Name) which serves to identify the data uniquely. In a computer network, a network routing is an essential factor to support data communication. The network routing on IP network relies only on Routing Information Base (RIB) derived from the IP table on the router. So that, if there is a problem on the network such as there is one node exposed to a dangerous attack, the IP router should wait until the IP table is updated, and then the routing channel is changed. The issue of how to change the routing path without updating IP table has received considerable critical attention. The NDN network has an advantage such as its capability to execute an adaptive forwarding mechanism, which FIB (Forwarding Information Base) of the NDN router keeps information for routing and forwarding planes. Therefore, if there is a problem on the network, the NDN router can detect the problem more quickly than the IP router. The contribution of this study is important to explain the benefit of the forwarding mechanism of the NDN network compared to the IP network forwarding mechanism when there is a node which is suffered a hijack attack.
Mixed-Criticality Systems (MCS) are real-time systems characterized by two or more distinct levels of criticality. In MCS, it is imperative that high-critical flows meet their deadlines while low critical flows can tolerate some delays. Sharing resources between flows in Network-On-Chip (NoC) can lead to different unpredictable latencies and subsequently complicate the implementation of MCS in many-core architectures. This paper proposes a new virtual channel router designed for MCS deployed over NoCs. The first objective of this router is to reduce the worst-case communication latency of high-critical flows. The second aim is to improve the network use rate and reduce the communication latency for low-critical flows. The proposed router, called DAS (Double Arbiter and Switching router), jointly uses Wormhole and Store And Forward techniques for low and high-critical flows respectively. Simulations with a cycle-accurate SystemC NoC simulator show that, with a 15% network use rate, the communication delay of high-critical flows is reduced by 80% while communication delay of low-critical flow is increased by 18% compared to usual solutions based on routers with multiple virtual channels.
Resource discovery in unstructured peer-to-peer networks causes a search query to be flooded throughout the network via random nodes, leading to security and privacy issues. The owner of the search query does not have control over the transmission of its query through the network. Although algorithms have been proposed for policy-compliant query or data routing in a network, these algorithms mainly deal with authentic route computation and do not provide mechanisms to actually verify the network paths taken by the query. In this work, we propose an approach to deal with the problem of verifying network paths taken by a search query during resource discovery, and detection of malicious forwarding of search query. Our approach aims at being secure and yet very scalable, even in the presence of huge number of nodes in the network.