Visible to the public Biblio

Filters: Keyword is MITM  [Clear All Filters]
2023-03-17
Colter, Jamison, Kinnison, Matthew, Henderson, Alex, Schlager, Stephen M., Bryan, Samuel, O’Grady, Katherine L., Abballe, Ashlie, Harbour, Steven.  2022.  Testing the Resiliency of Consumer Off-the-Shelf Drones to a Variety of Cyberattack Methods. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–5.
An often overlooked but equally important aspect of unmanned aerial system (UAS) design is the security of their networking protocols and how they deal with cyberattacks. In this context, cyberattacks are malicious attempts to monitor or modify incoming and outgoing data from the system. These attacks could target anywhere in the system where a transfer of data occurs but are most common in the transfer of data between the control station and the UAS. A compromise in the networking system of a UAS could result in a variety of issues including increased network latency between the control station and the UAS, temporary loss of control over the UAS, or a complete loss of the UAS. A complete loss of the system could result in the UAS being disabled, crashing, or the attacker overtaking command and control of the platform, all of which would be done with little to no alert to the operator. Fortunately, the majority of higher-end, enterprise, and government UAS platforms are aware of these threats and take actions to mitigate them. However, as the consumer market continues to grow and prices continue to drop, network security may be overlooked or ignored in favor of producing the lowest cost product possible. Additionally, these commercial off-the-shelf UAS often use uniform, standardized frequency bands, autopilots, and security measures, meaning a cyberattack could be developed to affect a wide variety of models with minimal changes. This paper will focus on a low-cost educational-use UAS and test its resilience to a variety of cyberattack methods, including man-in-the-middle attacks, spoofing of data, and distributed denial-of-service attacks. Following this experiment will be a discussion of current cybersecurity practices for counteracting these attacks and how they can be applied onboard a UAS. Although in this case the cyberattacks were tested against a simpler platform, the methods discussed are applicable to any UAS platform attempting to defend against such cyberattack methods.
ISSN: 2155-7209
2023-03-03
Khant, Shailesh, Patel, Atul, Patel, Sanskruti, Ganatra, Nilay, Patel, Rachana.  2022.  Cyber Security Actionable Education during COVID19 Third Wave in India. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :274–278.
Still in many countries COVID19 virus is changing its structure and creating damages in terms of economy and education. In India during the period of January 2022 third wave is on its high peak. Many colleges and schools are still forced to teach online. This paper describes how cyber security actionable or practical fundamental were taught by school or college teachers. Various cyber security tools are used to explain the actionable insight of the subject. Main Topics or concepts covered are MITM (Man In the Middle Attack) using ethercap tool in Kali Linux, spoofing methods like ARP (Address Resolution Protocol) spoofing and DNS (Domain Name System) spoofing, network intrusion detection using snort , finding information about packets using wireshark tool and other tools like nmap and netcat for finding the vulnerability. Even brief details were given about how to crack password using wireshark.
2021-08-11
Brooks, Richard, Wang, Kuang-Ching, Oakley, Jon, Tusing, Nathan.  2020.  Global Internet Traffic Routing and Privacy. 2020 International Scientific and Technical Conference Modern Computer Network Technologies (MoNeTeC). :1—7.
Current Internet Protocol routing provides minimal privacy, which enables multiple exploits. The main issue is that the source and destination addresses of all packets appear in plain text. This enables numerous attacks, including surveillance, man-in-the-middle (MITM), and denial of service (DoS). The talk explains how these attacks work in the current network. Endpoints often believe that use of Network Address Translation (NAT), and Dynamic Host Configuration Protocol (DHCP) can minimize the loss of privacy.We will explain how the regularity of human behavior can be used to overcome these countermeasures. Once packets leave the local autonomous system (AS), they are routed through the network by the Border Gateway Protocol (BGP). The talk will discuss the unreliability of BGP and current attacks on the routing protocol. This will include an introduction to BGP injects and the PEERING testbed for BGP experimentation. One experiment we have performed uses statistical methods (CUSUM and F-test) to detect BGP injection events. We describe work we performed that applies BGP injects to Internet Protocol (IP) address randomization to replace fixed IP addresses in headers with randomized addresses. We explain the similarities and differences of this approach with virtual private networks (VPNs). Analysis of this work shows that BGP reliance on autonomous system (AS) numbers removes privacy from the concept, even though it would disable the current generation of MITM and DoS attacks. We end by presenting a compromise approach that creates software-defined data exchanges (SDX), which mix traffic randomization with VPN concepts. We contrast this approach with the Tor overlay network and provide some performance data.
2021-03-09
Memos, V. A., Psannis, K. E..  2020.  AI-Powered Honeypots for Enhanced IoT Botnet Detection. 2020 3rd World Symposium on Communication Engineering (WSCE). :64—68.

Internet of Things (IoT) is a revolutionary expandable network which has brought many advantages, improving the Quality of Life (QoL) of individuals. However, IoT carries dangers, due to the fact that hackers have the ability to find security gaps in users' IoT devices, which are not still secure enough and hence, intrude into them for malicious activities. As a result, they can control many connected devices in an IoT network, turning IoT into Botnet of Things (BoT). In a botnet, hackers can launch several types of attacks, such as the well known attacks of Distributed Denial of Service (DDoS) and Man in the Middle (MitM), and/or spread various types of malicious software (malware) to the compromised devices of the IoT network. In this paper, we propose a novel hybrid Artificial Intelligence (AI)-powered honeynet for enhanced IoT botnet detection rate with the use of Cloud Computing (CC). This upcoming security mechanism makes use of Machine Learning (ML) techniques like the Logistic Regression (LR) in order to predict potential botnet existence. It can also be adopted by other conventional security architectures in order to intercept hackers the creation of large botnets for malicious actions.

2020-10-16
Babenko, Liudmila, Pisarev, Ilya.  2018.  Security Analysis of the Electronic Voting Protocol Based on Blind Intermediaries Using the SPIN Verifier. 2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :43—435.

Cryptographic protocols are the basis for the security of any protected system, including the electronic voting system. One of the most effective ways to analyze protocol security is to use verifiers. In this paper, the formal verifier SPIN was used to analyze the security of the cryptographic protocol for e-voting, which is based on model checking using linear temporal logic (LTL). The cryptographic protocol of electronic voting is described. The main structural units of the Promela language used for simulation in the SPIN verifier are described. The model of the electronic voting protocol in the language Promela is given. The interacting parties, transferred data, the order of the messages transmitted between the parties are described. Security of the cryptographic protocol using the SPIN tool is verified. The simulation of the protocol with active intruder using the man in the middle attack (MITM) to substitute data is made. In the simulation results it is established that the protocol correctly handles the case of an active attack on the parties' authentication.

2020-06-29
Sebbar, Anass, Zkik, Karim, Baadi, Youssef, Boulmalf, Mohammed, ECH-CHERIF El KETTANI, Mohamed Dafir.  2019.  Using advanced detection and prevention technique to mitigate threats in SDN architecture. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :90–95.
Software defined networks represent a new centralized network abstraction that aims to ease configuration and facilitate applications and services deployment to manage the upper layers. However, SDN faces several challenges that slow down its implementation such as security which represents one of the top concerns of SDN experts. Indeed, SDN inherits all security matters from traditional networks and suffers from some additional vulnerability due to its centralized and unique architecture. Using traditional security devices and solutions to mitigate SDN threats can be very complicated and can negatively effect the networks performance. In this paper we propose a study that measures the impact of using some well-known security solution to mitigate intrusions on SDN's performances. We will also present an algorithm named KPG-MT adapted to SDN architecture that aims to mitigate threats such as a Man in the Middle, Deny of Services and malware-based attacks. An implementation of our algorithm based on multiple attacks' scenarios and mitigation processes will be made to prove the efficiency of the proposed framework.
2020-04-13
Khurana, Madhu, Malik, Priyanka, Puneet, Shweta.  2020.  Network Security Monitoring (NSM): Can it be Effective in a World with Encrypted Traffic? 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). :140–144.
HTTPS is gaining widespread popularity for secure transactions. Most popular sites have made default choice as HTTPS. This development of encrypted traffic has brought in new challenges in the areas of network security monitoring and analysis. This paper makes a survey through various study done in the area on novel approaches for identification and investigating HTTPS traffic and its effect on network security monitoring. This work makes a complete analysis and evaluation of HTTPS protocol-is it ensuring security or are we entering in a vicious cycle of finding weaknesses and tryingto fill the gaps in Network security Monitoring. There are couple of vacuums that exist along with encrypted data, namely firewalls, IDS becoming blind to data being exchanged, enhancing vulnerabilities by making it tough to implement security policy and probability of malicious activities hidingin the ciphered traffic. Most of the current techniques namely DPI to port based to IP address to DNS to SNI filtering is prone to be ineffective in front of HTTPS traffic. The emphasis is upon the new ways to explore the expanding HTTPS volume with security breaches to cover new challenges related to Network Security Monitoring. Data collected from couple of up to date research and their conclusion hasbeen discussed to provide a brief overview so as to provide the reader with an in-depth understanding of the research progress in thisarea.
2020-03-23
Al-Adhami, Ayad H., Ambroze, Marcel, Stengel, Ingo, Tomlinson, Martin.  2019.  An Effencient Improvement of RFID Authentication Protocol Using Hash Function ZKP. 2019 2nd Scientific Conference of Computer Sciences (SCCS). :87–92.
The applications of Radio Frequency Identification (RFID) technology has been rapidly developed to be used in different fields that require automatic identification of objects and managing information. The advantage of employing RFID systems is to facilitate automatic identification of objects from distance without any interaction with tagged objects and without using a line of sight as compared with barcode. However, security and privacy constitute a challenge to RFID system as RFID systems use the wireless communication. Many researchers have introduced elliptical curve cryptographic (ECC) solutions to the security and privacy in RFID system as an ideal cryptosystem to be implemented with RFID technology. However, most of these solutions do not have provide adequate protection. Moreover, in terms of integrity and confidentiality level, most of these authentication protocols still vulnerable to some of security and privacy attacks. Based on these facts, this paper proposes a mutual authentication protocol that aims at enhancing an existing RFID authentication protocol that suffers from tracking attack and man-in-the-middle attack (MITM). The enhancement is accomplished by improving the security and privacy level against MITM, tracking attack and other related attacks. The proposed protocol is dependent on use the elliptical curve version of Schnorr identification protocol in combination with Keccak hash function. This combination leads to enhance the confidentiality and integrity level of the RFID authentication system and increase the privacy protection.
2018-05-09
Green, Benjamin, Krotofil, Marina, Abbasi, Ali.  2017.  On the Significance of Process Comprehension for Conducting Targeted ICS Attacks. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :57–67.

The exploitation of Industrial Control Systems (ICSs) has been described as both easy and impossible, where is the truth? PostStuxnet works have included a plethora of ICS focused cyber security research activities, with topics covering device maturity, network protocols, and overall cyber security culture. We often hear the notion of ICSs being highly vulnerable due to a lack of inbuilt security mechanisms, considered a low hanging fruit to a variety of low skilled threat actors. While there is substantial evidence to support such a notion, when considering targeted attacks on ICS, it is hard to believe an attacker with limited resources, such as a script kiddie or hacktivist, using publicly accessible tools and exploits alone, would have adequate knowledge and resources to achieve targeted operational process manipulation, while simultaneously evade detection. Through use of a testbed environment, this paper provides two practical examples based on a Man-In-The-Middle scenario, demonstrating the types of information an attacker would need obtain, collate, and comprehend, in order to begin targeted process manipulation and detection avoidance. This allows for a clearer view of associated challenges, and illustrate why targeted ICS exploitation might not be possible for every malicious actor.

2018-03-19
Ge, H., Yue, D., p Xie, X., Deng, S., Zhang, Y..  2017.  Analysis of Cyber Physical Systems Security via Networked Attacks. 2017 36th Chinese Control Conference (CCC). :4266–4272.

In this paper, cyber physical system is analyzed from security perspective. A double closed-loop security control structure and algorithm with defense functions is proposed. From this structure, the features of several cyber attacks are considered respectively. By this structure, the models of information disclosure, denial-of-service (DoS) and Man-in-the-Middle Attack (MITM) are proposed. According to each kind attack, different models are obtained and analyzed, then reduce to the unified models. Based on this, system security conditions are obtained, and a defense scenario with detail algorithm is design to illustrate the implementation of this program.

2018-02-14
Naik, N., Jenkins, P..  2017.  Securing digital identities in the cloud by selecting an apposite Federated Identity Management from SAML, OAuth and OpenID Connect. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :163–174.
Access to computer systems and the information held on them, be it commercially or personally sensitive, is naturally, strictly controlled by both legal and technical security measures. One such method is digital identity, which is used to authenticate and authorize users to provide access to IT infrastructure to perform official, financial or sensitive operations within organisations. However, transmitting and sharing this sensitive information with other organisations over insecure channels always poses a significant security and privacy risk. An example of an effective solution to this problem is the Federated Identity Management (FIdM) standard adopted in the cloud environment. The FIdM standard is used to authenticate and authorize users across multiple organisations to obtain access to their networks and resources without transmitting sensitive information to other organisations. Using the same authentication and authorization details among multiple organisations in one federated group, it protects the identities and credentials of users in the group. This protection is a balance, mitigating security risk whilst maintaining a positive experience for users. Three of the most popular FIdM standards are Security Assertion Markup Language (SAML), Open Authentication (OAuth), and OpenID Connect (OIDC). This paper presents an assessment of these standards considering their architectural design, working, security strength and security vulnerability, to cognise and ascertain effective usages to protect digital identities and credentials. Firstly, it explains the architectural design and working of these standards. Secondly, it proposes several assessment criteria and compares functionalities of these standards based on the proposed criteria. Finally, it presents a comprehensive analysis of their security vulnerabilities to aid in selecting an apposite FIdM. This analysis of security vulnerabilities is of great significance because their improper or erroneous deployme- t may be exploited for attacks.
2017-09-27
O'Neill, Mark, Ruoti, Scott, Seamons, Kent, Zappala, Daniel.  2016.  TLS Proxies: Friend or Foe? Proceedings of the 2016 Internet Measurement Conference. :551–557.
We measure the prevalence and uses of TLS proxies using a Flash tool deployed with a Google AdWords campaign. We generate 2.9 million certificate tests and find that 1 in 250 TLS connections are TLS-proxied. The majority of these proxies appear to be benevolent, however we identify over 1,000 cases where three malware products are using this technology nefariously. We also find numerous instances of negligent, duplicitous, and suspicious behavior, some of which degrade security for users without their knowledge. Distinguishing these types of practices is challenging in practice, indicating a need for transparency and user awareness.
2017-09-26
Walfield, Neal H., Koch, Werner.  2016.  TOFU for OpenPGP. Proceedings of the 9th European Workshop on System Security. :2:1–2:6.

We present the design and implementation of a trust-on-first-use (TOFU) policy for OpenPGP. When an OpenPGP user verifies a signature, TOFU checks that the signer used the same key as in the past. If not, this is a strong indicator that a key is a forgery and either the message is also a forgery or an active man-in-the-middle attack (MitM) is or was underway. That is, TOFU can proactively detect new attacks if the user had previously verified a message from the signer. And, it can reactively detect an attack if the signer gets a message through. TOFU cannot, however, protect against sustained MitM attacks. Despite this weakness, TOFU's practical security is stronger than the Web of Trust (WoT), OpenPGP's current trust policy, for most users. The problem with the WoT is that it requires too much user support. TOFU is also better than the most popular alternative, an X.509-based PKI, which relies on central servers whose certification processes are often sloppy. In this paper, we outline how TOFU can be integrated into OpenPGP; we address a number of potential attacks against TOFU; and, we show how TOFU can work alongside the WoT. Our implementation demonstrates the practicality of the approach.

2017-05-30
Shah, Anant, Fontugne, Romain, Papadopoulos, Christos.  2016.  Towards Characterizing International Routing Detours. Proceedings of the 12th Asian Internet Engineering Conference. :17–24.

There are currently no requirements (technical or otherwise) that routing paths must be contained within national boundaries. Indeed, some paths experience international detours, i.e., originate in one country, cross international boundaries and return to the same country. In most cases these are sensible traffic engineering or peering decisions at ISPs that serve multiple countries. In some cases such detours may be suspicious. Characterizing international detours is useful to a number of players: (a) network engineers trying to diagnose persistent problems, (b) policy makers aiming at adhering to certain national communication policies, (c) entrepreneurs looking for opportunities to deploy new networks, or (d) privacy-conscious states trying to minimize the amount of internal communication traversing different jurisdictions. In this paper we characterize international detours in the Internet during the month of January 2016. To detect detours we sample BGP RIBs every 8 hours from 461 RouteViews and RIPE RIS peers spanning 30 countries. We use geolocation of ASes which geolocates each BGP prefix announced by each AS, mapping its presence at IXPs and geolocation infrastructure IPs. Finally, we analyze each global BGP RIB entry looking for detours. Our analysis shows more than 5K unique BGP prefixes experienced a detour. 132 prefixes experienced more than 50% of the detours. We observe about 544K detours. Detours either last for a few days or persist the entire month. Out of all the detours, more than 90% were transient detours that lasted for 72 hours or less. We also show different countries experience different characteristics of detours.