Biblio
Static analysis tools help to detect common pro-gramming errors but generate a large number of false positives. Moreover, when applied to evolving software systems, around 95 % of alarms generated on a version are repeated, i.e., they have also been generated on the previous version. Version-aware static analysis techniques (VSATs) have been proposed to suppress the repeated alarms that are not impacted by the code changes between the two versions. The alarms reported by VSATs after the suppression, called delta alarms, still constitute 63% of the tool-generated alarms. We observe that delta alarms can be further postprocessed using their corresponding code changes: the code changes due to which VSATs identify them as delta alarms. However, none of the existing VSATs or alarms postprocessing techniques postprocesses delta alarms using the corresponding code changes. Based on this observation, we use the code changes to classify delta alarms into six classes that have different priorities assigned to them. The assignment of priorities is based on the type of code changes and their likelihood of actually impacting the delta alarms. The ranking of alarms, obtained by prioritizing the classes, can help suppress alarms that are ranked lower, when resources to inspect all the tool-generated alarms are limited. We performed an empirical evaluation using 9789 alarms generated on 59 versions of seven open source C applications. The evaluation results indicate that the proposed classification and ranking of delta alarms help to identify, on average, 53 % of delta alarms as more likely to be false positives than the others.
Software verification has been well applied in safety critical areas and has shown the ability to provide better quality assurance for modern software. However, as lines of code and complexity of software systems increase, the scalability of verification becomes a challenge. In this paper, we present an automatic software verification framework TSV to address the scalability issues: (i) the extended structural abstraction and property-guided program slicing to solve large-scale program verification problem, saving time and memory without losing accuracy; (ii) automatically select different verification methods according to the program and property context to improve the verification efficiency. For evaluation, we compare TSV's different configurations with existing C program verifiers based on open benchmarks. We found that TSV with auto-selection performs better than with bounded model checking only or with extended structural abstraction only. Compared to existing tools such as CMBC and CPAChecker, it acquires 10%-20% improvement of accuracy and 50%-90% improvement of memory consumption.
Machine-code slicing is an important primitive for building binary analysis and rewriting tools, such as taint trackers, fault localizers, and partial evaluators. However, it is not easy to create a machine-code slicer that exhibits a high level of precision. Moreover, the problem of creating such a tool is compounded by the fact that a small amount of local imprecision can be amplified via cascade effects. Most instructions in instruction sets such as Intel's IA-32 and ARM are multi-assignments: they have several inputs and several outputs (registers, flags, and memory locations). This aspect of the instruction set introduces a granularity issue during slicing: there are often instructions at which we would like the slice to include only a subset of the instruction's semantics, whereas the slice is forced to include the entire instruction. Consequently, the slice computed by state-of-the-art tools is very imprecise, often including essentially the entire program. This paper presents an algorithm to slice machine code more accurately. To counter the granularity issue, our algorithm performs slicing at the microcode level, instead of the instruction level, and obtains a more precise microcode slice. To reconstitute a machine-code program from a microcode slice, our algorithm uses machine-code synthesis. Our experiments on IA-32 binaries of FreeBSD utilities show that, in comparison to slices computed by a state-of-the-art tool, our algorithm reduces the size of backward slices by 33%, and forward slices by 70%.