Visible to the public Biblio

Filters: Keyword is stream cipher  [Clear All Filters]
2023-03-03
Bharathi, C, Annapurna, K Y, Koppad, Deepali, Sudeendra Kumar, K.  2022.  An Analysis of Stream and Block Ciphers for Scan Encryption. 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). :1–5.
Scan-based test methodology is one of the most popular test techniques in VLSI circuits. This methodology increases the testability which in turn improves the fault coverage. For this purpose, the technique uses a chain of scan cells. This becomes a source of attack for an attacker who can observe / control the internal states and use the information for malicious purposes. Hence, security becomes the main concern in the Integrated Circuit (IC) domain since scan chains are the main reason for leakage of confidential information during testing phase. These leakages will help attackers in reverse engineering. Measures against such attacks have to be taken by encrypting the data which flows through the scan chains. Lightweight ciphers can be used for scan chain encryption. In this work, encryption of scan data is done for ISCAS-89 benchmarks and the performance and security properties are evaluated. Lightweight stream and block ciphers are used to perform scan encryption. A comparative analysis between the two techniques is performed in par with the functions related to design cost and security properties.
Yang, Gangqiang, Shi, Zhengyuan, Chen, Cheng, Xiong, Hailiang, Hu, Honggang, Wan, Zhiguo, Gai, Keke, Qiu, Meikang.  2022.  Work-in-Progress: Towards a Smaller than Grain Stream Cipher: Optimized FPGA Implementations of Fruit-80. 2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES). :19–20.
Fruit-80, an ultra-lightweight stream cipher with 80-bit secret key, is oriented toward resource constrained devices in the Internet of Things. In this paper, we propose area and speed optimization architectures of Fruit-80 on FPGAs. The area optimization architecture reuses NFSR&LFSR feedback functions and achieves the most suitable ratio of look-up-tables and flip-flops. The speed optimization architecture adopts a hybrid approach for parallelization and reduces the latency of long data paths by pre-generating primary feedback and inserting flip-flops. In conclusion, the optimal throughput-to-area ratio of the speed optimization architecture is better than that of Grain v1. The area optimization architecture occupies only 35 slices on Xilinx Spartan-3 FPGA, smaller than that of Grain and other common stream ciphers. To the best of our knowledge, this result sets a new record of the minimum area in lightweight cipher implementations on FPGA.
2022-06-09
Souror, Samia, El-Fishawy, Nawal, Badawy, Mohammed.  2021.  SCKHA: A New Stream Cipher Algorithm Based on Key Hashing and Splitting Technique. 2021 International Conference on Electronic Engineering (ICEEM). :1–7.
Cryptographic algorithms are playing an important role in the information security field. Strong and unbreakable algorithms provide high security and good throughput. The strength of any encryption algorithm is basically based on the degree of difficulty to obtain the encryption key by such cyber-attacks as brute. It is supposed that the bigger the key size, the more difficult it is to compute the key. But increasing the key size will increase both the computational complexity and the processing time of algorithms. In this paper, we proposed a reliable, effective, and more secure symmetric stream cipher algorithm for encryption and decryption called Symmetric Cipher based on Key Hashing Algorithm (SCKHA). The idea of this algorithm is based on hashing and splitting the encryption symmetric key. Hashing the key will hide the encrypted key to prevent any intruder from forging the hash code, and, thus, it satisfies the purpose of security, authentication, and integrity for a message on the network. In addition, the algorithm is secure against a brute-force attack by increasing the resources it takes for testing each possible key. Splitting the hashed value of the encryption key will divide the hashed key into two key chunks. The encryption process performed using such one chunk based on some calculations on the plaintext. This algorithm has three advantages that are represented in computational simplicity, security and efficiency. Our algorithm is characterized by its ability to search on the encrypted data where the plaintext character is represented by two ciphertext characters (symbols).
2022-05-05
Zhang, Qiao-Jia, Ye, Qing, Li, Liang, Liu, Si-jie, Chen, Kai-qiang.  2021.  An efficient selective encryption scheme for HEVC based on hyperchaotic Lorenz system. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). 5:683—690.
With the wide application of video information, the protection of video information from illegal access has been widely investigated recently. An efficient selective encryption scheme for high efficiency video coding (HEVC) based on hyperchaotic Lorenz system is proposed. Firstly, the hyperchaotic Lorenz system is discretized and the generated chaotic state values are converted into chaotic pseudorandom sequences for encryption. The important syntax elements in HEVC are then selectively encrypted with the generated stream cipher. The experimental results show that the encrypted video is highly disturbed and the video information cannot be recognized. Through the analysis of objective index results, it is shown that the scheme is both efficient and security.
2021-08-18
Mohandas, Nair Arun, Swathi, Adinath, R., Abhijith, Nazar, Ajmal, Sharath, Greeshma.  2020.  A4: A Lightweight Stream Cipher. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :573—577.
Lightweight ciphers are algorithms with low computational and spacial complexity. In the modern world of miniaturization, a lightweight cipher is used in constrained devices such as RFID tags, fire and security detectors, devices for wireless communications and other IoT devices. Stream ciphers are symmetric ciphers which encrypts the plain text bit stream with corresponding key stream to generate cipher text. Hence a stream cipher with low computational complexity and maximum security can be termed as a lightweight stream cipher. Many light weight stream ciphers are already existing. Each has its own vulnerabilities and spacial requirement. This paper has successfully developed, implemented, and analyzed a lightweight stream cipher - A4. Along with low computational cost, A4 also ensures paramount security and is less prone to the emerging cryptographic attacks.
2021-03-29
Feng, G., Zhang, C., Si, Y., Lang, L..  2020.  An Encryption and Decryption Algorithm Based on Random Dynamic Hash and Bits Scrambling. 2020 International Conference on Communications, Information System and Computer Engineering (CISCE). :317–320.
This paper proposes a stream cipher algorithm. Its main principle is conducting the binary random dynamic hash with the help of key. At the same time of calculating the hash mapping address of plaintext, change the value of plaintext through bits scrambling, and then map it to the ciphertext space. This encryption method has strong randomness, and the design of hash functions and bits scrambling is flexible and diverse, which can constitute a set of encryption and decryption methods. After testing, the code evenness of the ciphertext obtained using this method is higher than that of the traditional method under some extreme conditions..
2021-01-22
Kubba, Z. M. Jawad, Hoomod, H. K..  2019.  A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System. 2019 First International Conference of Computer and Applied Sciences (CAS). :199–203.

Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterises the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is applied to generate pseudo-random keys that produce more complexity for the proposed cipher algorithm. The goal of the proposed algorithm is to present a hybrid algorithm by enhancing the complexity of the current PRESENT algorithm while keeping the performance of computational operations as minimal. The proposed algorithm proved working efficiently with fast executed time, and the analysed result of the generated sequence keys passed the randomness of the NIST suite.

2020-09-08
Jawad Kubba, Zaid M., Hoomod, Haider K..  2019.  A Hybrid Modified Lightweight Algorithm Combined of Two Cryptography Algorithms PRESENT and Salsa20 Using Chaotic System. 2019 First International Conference of Computer and Applied Sciences (CAS). :199–203.
Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterises the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is applied to generate pseudo-random keys that produce more complexity for the proposed cipher algorithm. The goal of the proposed algorithm is to present a hybrid algorithm by enhancing the complexity of the current PRESENT algorithm while keeping the performance of computational operations as minimal. The proposed algorithm proved working efficiently with fast executed time, and the analysed result of the generated sequence keys passed the randomness of the NIST suite.
2020-09-04
Mahmood, Riyadh Zaghlool, Fathil, Ahmed Fehr.  2019.  High Speed Parallel RC4 Key Searching Brute Force Attack Based on FPGA. 2019 International Conference on Advanced Science and Engineering (ICOASE). :129—134.

A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.

2020-03-16
Kholidy, Hisham A..  2019.  Towards A Scalable Symmetric Key Cryptographic Scheme: Performance Evaluation and Security Analysis. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
In most applications, security attributes are pretty difficult to meet but it becomes even a bigger challenge when talking about Grid Computing. To secure data passes in Grid Systems, we need a professional scheme that does not affect the overall performance of the grid system. Therefore, we previously developed a new security scheme “ULTRA GRIDSEC” that is used to accelerate the performance of the symmetric key encryption algorithms for both stream and block cipher encryption algorithms. The scheme is used to accelerate the security of data pass between elements of our newly developed pure peer-to-peer desktop grid framework, “HIMAN”. It also enhances the security of the encrypted data resulted from the scheme and prevents the problem of weak keys of the encryption algorithms. This paper covers the analysis and evaluation of this scheme showing the different factors affecting the scheme performance, and covers the efficiency of the scheme from the security prospective. The experimental results are highlighted for two types of encryption algorithms, TDES as an example for the block cipher algorithms, and RC4 as an example for the stream cipher algorithms. The scheme speeds up the former algorithm by 202.12% and the latter one by 439.7%. These accelerations are also based on the running machine's capabilities.
2020-01-07
Sadkhan, Sattar B., Yaseen, Basim S..  2018.  A DNA-Sticker Algorithm for Cryptanalysis LFSRs and NLFSRs Based Stream Cipher. 2018 International Conference on Advanced Science and Engineering (ICOASE). :301-305.
In this paper, We propose DNA sticker model based algorithm, a computability model, which is a simulation of the parallel computations using the Molecular computing as in Adelman's DNA computing experiment, it demonstrates how to use a sticker-based model to design a simple DNA-based algorithm for attacking a linear and a non-linear feedback shift register (FSR) based stream cipher. The algorithm first construct the TEST TUBE contains all overall solution space of memory complexes for the cipher and initials of registers via the sticker-based model. Then, with biological operations, separate and combine, we remove those which encode illegal plain and key stream from the TEST TUBE of memory complexes, the decision based on verifying a key stream bit this bit represented by output of LFSRs equation. The model anticipates two basic groups of single stranded DNA molecules in its representation one of a genetic bases and second of a bit string, It invests parallel search into the space of solutions through the possibilities of DNA computing and makes use of the method of cryptanalysis of algebraic code as a decision technique to accept the solution or not, and their operations are repeated until one solution or limited group of solutions is reached. The main advantages of the suggested algorithm are limited number of cipher characters, and finding one exact solution The present work concentrates on showing the applicability of DNA computing concepts as a powerful tool in breaking cryptographic systems.
2019-10-08
Tripathi, S. K., Pandian, K. K. S., Gupta, B..  2018.  Hardware Implementation of Dynamic Key Value Based Stream Cipher Using Chaotic Logistic Map. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1104–1108.

In the last few decades, the relative simplicity of the logistic map made it a widely accepted point in the consideration of chaos, which is having the good properties of unpredictability, sensitiveness in the key values and ergodicity. Further, the system parameters fit the requirements of a cipher widely used in the field of cryptography, asymmetric and symmetric key chaos based cryptography, and for pseudorandom sequence generation. Also, the hardware-based embedded system is configured on FPGA devices for high performance. In this paper, a novel stream cipher using chaotic logistic map is proposed. The two chaotic logistic maps are coded using Verilog HDL and implemented on commercially available FPGA hardware using Xilinx device: XC3S250E for the part: FT256 and operated at frequency of 62.20 MHz to generate the non-recursive key which is used in key scheduling of pseudorandom number generation (PRNG) to produce the key stream. The realization of proposed cryptosystem in this FPGA device accomplishes the improved efficiency equal to 0.1186 Mbps/slice. Further, the generated binary sequence from the experiment is analyzed for X-power, thermal analysis, and randomness tests are performed using NIST statistical.

2019-08-05
Hu, Xinyi, Zhao, Yaqun.  2018.  One to One Identification of Cryptosystem Using Fisher's Discriminant Analysis. Proceedings of the 6th ACM/ACIS International Conference on Applied Computing and Information Technology. :7–12.
Distinguishing analysis is an important part of cryptanalysis. It is an important content of discriminating analysis that how to identify ciphertext is encrypted by which cryptosystems when it knows only ciphertext. In this paper, Fisher's discriminant analysis (FDA), which is based on statistical method and machine learning, is used to identify 4 stream ciphers and 7 block ciphers one to one by extracting 9 different features. The results show that the accuracy rate of the FDA can reach 80% when identifying files that are encrypted by the stream cipher and the block cipher in ECB mode respectively, and files encrypted by the block cipher in ECB mode and CBC mode respectively. The average one to one identification accuracy rates of stream ciphers RC4, Grain, Sosemanuk are more than 55%. The maximum accuracy rate can reach 60% when identifying SMS4 from block ciphers in CBC mode one to one. The identification accuracy rate of entropy-based features is apparently higher than the probability-based features.
2018-02-21
Liu, M., Yan, Y. J., Li, W..  2017.  Implementation and optimization of A5-1 algorithm on coarse-grained reconfigurable cryptographic logic array. 2017 IEEE 12th International Conference on ASIC (ASICON). :279–282.

A5-1 algorithm is a stream cipher used to encrypt voice data in GSM, which needs to be realized with high performance due to real-time requirements. Traditional implementation on FPGA or ASIC can't obtain a trade-off among performance, cost and flexibility. To this aim, this paper introduces CGRCA to implement A5-1, and in order to optimize the performance and resource consumption, this paper proposes a resource-based path seeking (RPS) algorithm to develop an advanced implementation. Experimental results show that final optimal throughput of A5-1 implemented on CGRCA is 162.87Mbps when the frequency is 162.87MHz, and the set-up time is merely 87 cycles, which is optimal among similar works.

2017-09-15
Salam, Md Iftekhar, Wong, Kenneth Koon-Ho, Bartlett, Harry, Simpson, Leonie, Dawson, Ed, Pieprzyk, Josef.  2016.  Finding State Collisions in the Authenticated Encryption Stream Cipher ACORN. Proceedings of the Australasian Computer Science Week Multiconference. :36:1–36:10.

This paper analyzes the authenticated encryption algorithm ACORN, a candidate in the CAESAR cryptographic competition. We identify weaknesses in the state update function of ACORN which result in collisions in the internal state of ACORN. This paper shows that for a given set of key and initialization vector values we can construct two distinct input messages which result in a collision in the ACORN internal state. Using a standard PC the collision can be found almost instantly when the secret key is known. This flaw can be used by a message sender to create a forged message which will be accepted as legitimate.

2017-06-05
Rani, P. Jhansi.  2016.  Pseudo Random Bit Generator Using Logistic and Bernoulli Maps. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :71:1–71:6.

We propose pseudo random bit generator(PRBG) by constructing an ergodic orbit of logistic map generated using intermittent perturbation and sampling the orbit using Bernoulli shift map. The pseudo randomness of the key streams is tested with the standard NIST statistical test suite. The key streams generated by the proposed PRBG pass all the tests of the test suite. As an application of PRBG we propose chaotic stream ciphers. Goodness-of-Fit tests are conducted for these ciphers. Stream ciphers generated using PRBG are shown to generate ciphers in which the distribution of the characters show significant correlation to the uniform distribution. It is also shown that the ciphers exhibit good avalanche effect when the initial seed is varied infinitesimally and we can also clearly observe the avalanche effect at different points within the ciphertext as the ciphertext is being generated. Also we show that the proposed PRBG is on par with conventional PRBG RC4. This indeed vindicates our hypothesis that stream of bits obtained from orbits of logistic map using perturbation and Bernoulli shift map exhibits randomness.