Visible to the public Biblio

Filters: Keyword is searchable symmetric encryption  [Clear All Filters]
2022-05-05
Zhang, Hongao, Yang, Zhen, Yu, Haiyang.  2021.  Lightweight and Privacy-preserving Search over Encryption Blockchain. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). :423—427.
With the development of cloud computing, a growing number of users use the cloud to store their sensitive data. To protect privacy, users often encrypt their data before outsourcing. Searchable Symmetric Encryption (SSE) enables users to retrieve their encrypted data. Most prior SSE schemes did not focus on malicious servers, and users could not confirm the correctness of the search results. Blockchain-based SSE schemes show the potential to solve this problem. However, the expensive nature of storage overhead on the blockchain presents an obstacle to the implementation of these schemes. In this paper, we propose a lightweight blockchain-based searchable symmetric encryption scheme that reduces the space cost in the scheme by improving the data structure of the encrypted index and ensuring efficient data retrieval. Experiment results demonstrate the practicability of our scheme.
2020-03-18
jaidane, Emna, Hamdi, Mohamed, Aguili, Taoufik, Kim, Tai-hoon.  2019.  A new vehicular blackbox architecture based on searchable encryption. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1073–1078.
Blackboxes are being increasingly used in the vehicular context to store and transmit information related to safety, security and many other applications. The plethora of sensors available at the different parts of the vehicle can provide enriched gathering of the data related to these applications. Nonetheless, to support multiple use cases, the blackbox must be accessible by various actors (e.g. vehicle owner, insurance company, law enforcement authorities). This raises significant challenges regarding the privacy of the data collected and stored in the blackbox. In fact, these data can often lead to tracing back accurate facts about the behaviour of the owner of the vehicle. To cope with this problem, we propose a new blackbox architecture supporting searchable encryption. This feature allows multiple users who are not able to decipher the content of the blackbox to validate properties such as path traceback and velocity. To illustrate the implementation of the proposed technique in practice, we discuss a case study related to post-accident processing by insurance companies.
2019-09-26
Kodera, Y., Kuribayashi, M., Kusaka, T., Nogami, Y..  2018.  Advanced Searchable Encryption: Keyword Search for Matrix-Type Storage. 2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW). :292-297.
The recent development of IoT technologies and cloud storages, many types of information including private information have been gradually outsourced. For such a situation, new convenient functionalities such as arithmetic and keyword search on ciphertexts are required to allow users to retrieve information without leaking any information. Especially, searchable encryptions have been paid much attention to realize a keyword search on an encrypted domain. In addition, an architecture of searchable symmetric encryption (SSE) is a suitable and efficient solution for data outsourcing. In this paper, we focus on an SSE scheme which employs a secure index for searching a keyword with optimal search time. In the conventional studies, it has been widely considered that the scheme searches whether a queried keyword is contained in encrypted documents. On the other hand, we additionally take into account the location of a queried keyword in documents by targeting a matrix-type data format. It enables a manager to search personal information listed per line or column in CSV-like format data.
2017-08-22
Demertzis, Ioannis, Papadopoulos, Stavros, Papapetrou, Odysseas, Deligiannakis, Antonios, Garofalakis, Minos.  2016.  Practical Private Range Search Revisited. Proceedings of the 2016 International Conference on Management of Data. :185–198.

We consider a data owner that outsources its dataset to an untrusted server. The owner wishes to enable the server to answer range queries on a single attribute, without compromising the privacy of the data and the queries. There are several schemes on "practical" private range search (mainly in Databases venues) that attempt to strike a trade-off between efficiency and security. Nevertheless, these methods either lack provable security guarantees, or permit unacceptable privacy leakages. In this paper, we take an interdisciplinary approach, which combines the rigor of Security formulations and proofs with efficient Data Management techniques. We construct a wide set of novel schemes with realistic security/performance trade-offs, adopting the notion of Searchable Symmetric Encryption (SSE) primarily proposed for keyword search. We reduce range search to multi-keyword search using range covering techniques with tree-like indexes. We demonstrate that, given any secure SSE scheme, the challenge boils down to (i) formulating leakages that arise from the index structure, and (ii) minimizing false positives incurred by some schemes under heavy data skew. We analytically detail the superiority of our proposals over prior work and experimentally confirm their practicality.

2017-07-24
Bost, Raphael.  2016.  ∑O\$\textbackslashphi\$Oς: Forward Secure Searchable Encryption. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1143–1154.

Searchable Symmetric Encryption aims at making possible searching over an encrypted database stored on an untrusted server while keeping privacy of both the queries and the data, by allowing some small controlled leakage to the server. Recent work shows that dynamic schemes – in which the data is efficiently updatable – leaking some information on updated keywords are subject to devastating adaptative attacks breaking the privacy of the queries. The only way to thwart this attack is to design forward private schemes whose update procedure does not leak if a newly inserted element matches previous search queries. This work proposes Sophos as a forward private SSE scheme with performance similar to existing less secure schemes, and that is conceptually simpler (and also more efficient) than previous forward private constructions. In particular, it only relies on trapdoor permutations and does not use an ORAM-like construction. We also explain why Sophos is an optimal point of the security/performance tradeoff for SSE. Finally, an implementation and evaluation results demonstrate its practical efficiency.

2017-06-05
Zhang, Rui, Xue, Rui, Yu, Ting, Liu, Ling.  2016.  Dynamic and Efficient Private Keyword Search over Inverted Index–Based Encrypted Data. ACM Trans. Internet Technol.. 16:21:1–21:20.

Querying over encrypted data is gaining increasing popularity in cloud-based data hosting services. Security and efficiency are recognized as two important and yet conflicting requirements for querying over encrypted data. In this article, we propose an efficient private keyword search (EPKS) scheme that supports binary search and extend it to dynamic settings (called DEPKS) for inverted index–based encrypted data. First, we describe our approaches of constructing a searchable symmetric encryption (SSE) scheme that supports binary search. Second, we present a novel framework for EPKS and provide its formal security definitions in terms of plaintext privacy and predicate privacy by modifying Shen et al.’s security notions [Shen et al. 2009]. Third, built on the proposed framework, we design an EPKS scheme whose complexity is logarithmic in the number of keywords. The scheme is based on the groups of prime order and enjoys strong notions of security, namely statistical plaintext privacy and statistical predicate privacy. Fourth, we extend the EPKS scheme to support dynamic keyword and document updates. The extended scheme not only maintains the properties of logarithmic-time search efficiency and plaintext privacy and predicate privacy but also has fewer rounds of communications for updates compared to existing dynamic search encryption schemes. We experimentally evaluate the proposed EPKS and DEPKS schemes and show that they are significantly more efficient in terms of both keyword search complexity and communication complexity than existing randomized SSE schemes.

Abdelraheem, Mohamed Ahmed, Gehrmann, Christian, Lindström, Malin, Nordahl, Christian.  2016.  Executing Boolean Queries on an Encrypted Bitmap Index. Proceedings of the 2016 ACM on Cloud Computing Security Workshop. :11–22.

We propose a simple and efficient searchable symmetric encryption scheme based on a Bitmap index that evaluates Boolean queries. Our scheme provides a practical solution in settings where communications and computations are very constrained as it offers a suitable trade-off between privacy and performance.