Mutaher, Hamza, Kumar, Pradeep.
2021.
Security-Enhanced SDN Controller Based Kerberos Authentication Protocol. 2021 11th International Conference on Cloud Computing, Data Science Engineering (Confluence). :672–677.
Scalability is one of the effective features of the Software Defined Network (SDN) that allows several devices to communicate with each other. In SDN scalable networks, the number of hosts keeps increasing as per networks need. This increment makes network administrators take a straightforward action to ensure these hosts' authenticity in the network. To address this issue, we proposed a technique to authenticate SDN hosts before permitting them to establish communication with the SDN controller. In this technique, we used the Kerberos authentication protocol to ensure the authenticity of the hosts. Kerberos verifies the hosts' credentials using a centralized server contains all hosts IDs and passwords. This technique eases the secure communication between the hosts and controller and allows the hosts to safely get network rules and policies. The proposed technique ensures the immunity of the network against network attacks.
Sutton, Robert, Ludwiniak, Robert, Pitropakis, Nikolaos, Chrysoulas, Christos, Dagiuklas, Tasos.
2021.
Towards An SDN Assisted IDS. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1–5.
Modern Intrusion Detection Systems are able to identify and check all traffic crossing the network segments that they are only set to monitor. Traditional network infrastructures use static detection mechanisms that check and monitor specific types of malicious traffic. To mitigate this potential waste of resources and improve scalability across an entire network, we propose a methodology which deploys distributed IDS in a Software Defined Network allowing them to be used for specific types of traffic as and when it appears on a network. The core of our work is the creation of an SDN application that takes input from a Snort IDS instances, thus working as a classifier for incoming network traffic with a static ruleset for those classifications. Our application has been tested on a virtualised platform where it performed as planned holding its position for limited use on static and controlled test environments.
Dinh, Phuc Trinh, Park, Minho.
2021.
BDF-SDN: A Big Data Framework for DDoS Attack Detection in Large-Scale SDN-Based Cloud. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
Software-defined networking (SDN) nowadays is extensively being used in a variety of practical settings, provides a new way to manage networks by separating the data plane from its control plane. However, SDN is particularly vulnerable to Distributed Denial of Service (DDoS) attacks because of its centralized control logic. Many studies have been proposed to tackle DDoS attacks in an SDN design using machine-learning-based schemes; however, these feature-based detection schemes are highly resource-intensive and they are unable to perform reliably in such a large-scale SDN network where a massive amount of traffic data is generated from both control and data planes. This can deplete computing resources, degrade network performance, or even shut down the network systems owing to being exhausting resources. To address the above challenges, this paper proposes a big data framework to overcome traditional data processing limitations and to exploit distributed resources effectively for the most compute-intensive tasks such as DDoS attack detection using machine learning techniques, etc. We demonstrate the robustness, scalability, and effectiveness of our framework through practical experiments.
Rezaei, Ghazal, Hashemi, Massoud Reza.
2021.
An SDN-based Firewall for Networks with Varying Security Requirements. 2021 26th International Computer Conference, Computer Society of Iran (CSICC). :1–7.
With the new coronavirus crisis, medical devices' workload has increased dramatically, leaving them growingly vulnerable to security threats and in need of a comprehensive solution. In this work, we take advantage of the flexible and highly manageable nature of Software Defined Networks (SDN) to design a thoroughgoing security framework that covers a health organization's various security requirements. Our solution comes to be an advanced SDN firewall that solves the issues facing traditional firewalls. It enables the partitioning of the organization's network and the enforcement of different filtering and monitoring behaviors on each partition depending on security conditions. We pursued the network's efficient and dynamic security management with the least human intervention in designing our model which makes it generally qualified to use in networks with different security requirements.
Chasaki, Danai, Mansour, Christopher.
2021.
Detecting Malicious Hosts in SDN through System Call Learning. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Software Defined Networking (SDN) has changed the way of designing and managing networks through programmability. However, programmability also introduces security threats. In this work we address the issue of malicious hosts running malicious applications that bypass the standard SDN based detection mechanisms. The SDN security system we are proposing periodically monitors the system calls utilization of the different SDN applications installed, learns from past system behavior using machine learning classifiers, and thus accurately detects the existence of an unusual activity or a malicious application.
Liang, Huichao, Liu, Han, Dang, Fangfang, Yan, Lijing, Li, Dingding.
2021.
Information System Security Protection Based on SDN Technology in Cloud Computing Environment. 2021 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :432–435.
Cloud computing is a modern computing mode based on network, which is widely participated by the public, and provides virtualized dynamic computing resources in the form of services. Cloud computing builds an effective communication platform with the help of computer internet, so that users can get the same computing resources even if they are in different areas. With its unique technical characteristics and advantages, cloud computing has been deployed to practical applications more and more, and the consequent security problems of cloud computing have become increasingly prominent. In addition to the original cloud computing environment, this paper proposes to build a secure cloud with cloud technology, deploy security agents in the business cloud, connect the business cloud, security cloud and security agents through SDN (software defined network) technology, and dynamically divide the business cloud into logically isolated business areas through security agents. Therefore, security is separated from the specific implementation technology and deployment scheme of business cloud, and an information security protection scheme under cloud computing environment is proposed according to the characteristics of various factors, so as to enhance the security of network information.
Thorat, Pankaj, Dubey, Niraj Kumar, Khetan, Kunal, Challa, Rajesh.
2021.
SDN-based Predictive Alarm Manager for Security Attacks Detection at the IoT Gateways. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
The growing adoption of IoT devices is creating a huge positive impact on human life. However, it is also making the network more vulnerable to security threats. One of the major threats is malicious traffic injection attack, where the hacked IoT devices overwhelm the application servers causing large-scale service disruption. To address such attacks, we propose a Software Defined Networking based predictive alarm manager solution for malicious traffic detection and mitigation at the IoT Gateway. Our experimental results with the proposed solution confirms the detection of malicious flows with nearly 95% precision on average and at its best with around 99% precision.
Song, Yan, Luo, Wenjing, Li, Jian, Xu, Panfeng, Wei, Jianwei.
2021.
SDN-based Industrial Internet Security Gateway. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :238–243.
Industrial Internet is widely used in the production field. As the openness of networks increases, industrial networks facing increasing security risks. Information and communication technologies are now available for most industrial manufacturing. This industry-oriented evolution has driven the emergence of cloud systems, the Internet of Things (IoT), Big Data, and Industry 4.0. However, new technologies are always accompanied by security vulnerabilities, which often expose unpredictable risks. Industrial safety has become one of the most essential and challenging requirements. In this article, we highlight the serious challenges facing Industry 4.0, introduce industrial security issues and present the current awareness of security within the industry. In this paper, we propose solutions for the anomaly detection and defense of the industrial Internet based on the demand characteristics of network security, the main types of intrusions and their vulnerability characteristics. The main work is as follows: This paper first analyzes the basic network security issues, including the network security needs, the security threats and the solutions. Secondly, the security requirements of the industrial Internet are analyzed with the characteristics of industrial sites. Then, the threats and attacks on the network are analyzed, i.e., system-related threats and process-related threats; finally, the current research status is introduced from the perspective of network protection, and the research angle of this paper, i.e., network anomaly detection and network defense, is proposed in conjunction with relevant standards. This paper proposes a software-defined network (SDN)-based industrial Internet security gateway for the security protection of the industrial Internet. Since there are some known types of attacks in the industrial network, in order to fully exploit the effective information, we combine the ExtratreesClassifier to enhance the detection rate of anomaly detection. In order to verify the effectiveness of the algorithm, this paper simulates an industrial network attack, using the acquired training data for testing. The test data are industrial network traffic datasets, and the experimental results show that the algorithm is suitable for anomaly detection in industrial networks.