Biblio
The Internet of Things (IoT) is increasingly being used in applications ranging from precision agriculture to critical national infrastructure by deploying a large number of resource-constrained devices in hostile environments. These devices are being exploited to launch attacks in cyber systems. As a result, security has become a significant concern in the design of IoT based applications. In this paper, we present a security architecture for IoT networks by leveraging the underlying features supported by Software Defined Networks (SDN). Our security architecture restricts network access to authenticated IoT devices. We use fine granular policies to secure the flows in the IoT network infrastructure and provide a lightweight protocol to authenticate IoT devices. Such an integrated security approach involving authentication of IoT devices and enabling authorized flows can help to protect IoT networks from malicious IoT devices and attacks.
RFID Grouping proof convinces an offline verifier that multiple tags are simultaneously scanned. Various solutions have been proposed but most of them have security and privacy vulnerabilities. In this paper, we propose an elliptic-curve-based RFID grouping proof protocol. Our protocol is proven secure and narrow-strong private. We also demonstrate that our grouping proof can be batch verified to improve the efficiency for large-scale RFID systems and it is suitable for low-cost RFID tags.
Software Defined Network(SDN) is a promising technological advancement in the networking world. It is still evolving and security is a major concern for SDN. In this paper we proposed policy based security architecture for securing the SDN domains. Our architecture enables the administrator to enforce different types of policies such as based on the devices, users, location and path for securing the communication in SDN domain. Our architecture is developed as an application that can be run on any of the SDN Controllers. We have implemented our architecture using the POX Controller and Raspberry Pi 2 switches. We will present different case scenarios to demonstrate fine granular security policy enforcement with our architecture.
In this paper, we propose new types of cascading attacks against smart grid that use control command disaggregation and core smart grid services. Although there have been tremendous research efforts in injection attacks against the smart grid, to our knowledge most studies focus on false meter data injection, and false command and false feedback injection attacks have been scarcely investigated. In addition, control command disaggregation has not been addressed from a security point of view, in spite of the fact that it is becoming one of core concepts in the smart grid and hence analysing its security implications is crucial to the smart grid security. Our cascading attacks use false control command, false feedback or false meter data injection, and cascade the effects of such injections throughout the smart grid subsystems and components. Our analysis and evaluation results show that the proposed attacks can cause serious service disruptions in the smart grid. The evaluation has been performed on a widely used smart grid simulation platform.