Visible to the public Biblio

Filters: Keyword is immersion  [Clear All Filters]
2018-01-10
Cheng, Lung-Pan, Marwecki, Sebastian, Baudisch, Patrick.  2017.  Mutual Human Actuation. Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. :797–805.
Human actuation is the idea of using people to provide large-scale force feedback to users. The Haptic Turk system, for example, used four human actuators to lift and push a virtual reality user; TurkDeck used ten human actuators to place and animate props for a single user. While the experience of human actuators was decent, it was still inferior to the experience these people could have had, had they participated as a user. In this paper, we address this issue by making everyone a user. We introduce mutual human actuation, a version of human actuation that works without dedicated human actuators. The key idea is to run pairs of users at the same time and have them provide human actuation to each other. Our system, Mutual Turk, achieves this by (1) offering shared props through which users can exchange forces while obscuring the fact that there is a human on the other side, and (2) synchronizing the two users' timelines such that their way of manipulating the shared props is consistent across both virtual worlds. We demonstrate mutual human actuation with an example experience in which users pilot kites though storms, tug fish out of ponds, are pummeled by hail, battle monsters, hop across chasms, push loaded carts, and ride in moving vehicles.
Cordeil, Maxime, Cunningham, Andrew, Dwyer, Tim, Thomas, Bruce H., Marriott, Kim.  2017.  ImAxes: Immersive Axes As Embodied Affordances for Interactive Multivariate Data Visualisation. Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. :71–83.
We introduce ImAxes immersive system for exploring multivariate data using fluid, modeless interaction. The basic interface element is an embodied data axis. The user can manipulate these axes like physical objects in the immersive environment and combine them into sophisticated visualisations. The type of visualisation that appears depends on the proximity and relative orientation of the axes with respect to one another, which we describe with a formal grammar. This straight-forward composability leads to a number of emergent visualisations and interactions, which we review, and then demonstrate with a detailed multivariate data analysis use case.
2017-06-27
Ramos Mota, Roberta C., Cartwright, Stephen, Sharlin, Ehud, Hamdi, Hamidreza, Costa Sousa, Mario, Chen, Zhangxin.  2016.  Exploring Immersive Interfaces for Well Placement Optimization in Reservoir Models. Proceedings of the 2016 Symposium on Spatial User Interaction. :121–130.

As the oil and gas industry's ultimate goal is to uncover efficient and economic ways to produce oil and gas, well optimization studies are crucially important for reservoir engineers. Although this task has a major impact on reservoir productivity, it has been challenging for reservoir engineers to perform since it involves time-consuming flow simulations to search a large solution space for an optimal well plan. Our work aims to provide engineers a) an analytical method to perform static connectivity analysis as a proxy for flow simulation, b) an application to support well optimization using our method and c) an immersive experience that benefits engineers and supports their needs and preferences when performing the design and assessment of well trajectories. For the latter purpose, we explore our tool with three immersive environments: a CAVE with a tracked gamepad; a HMD with a tracked gamepad; and a HMD with a Leap Motion controller. This paper describes our application and its techniques in each of the different immersive environments. This paper also describes our findings from an exploratory evaluation conducted with six reservoir engineers, which provided insight into our application, and allowed us to discuss the potential benefits of immersion for the oil and gas domain.

Hu, Gang, Bin Hannan, Nabil, Tearo, Khalid, Bastos, Arthur, Reilly, Derek.  2016.  Doing While Thinking: Physical and Cognitive Engagement and Immersion in Mixed Reality Games. Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :947–958.

We present a study examining the impact of physical and cognitive challenge on reported immersion for a mixed reality game called Beach Pong. Contrary to prior findings for desktop games, we find significantly higher reported immersion among players who engage physically, regardless of their actual game performance. Building a mental map of the real, virtual, and sensed world is a cognitive challenge for novices, and this appears to influence immersion: in our study, participants who actively attended to both physical and virtual game elements reported higher immersion levels than those who attended mainly or exclusively to virtual elements. Without an integrated mental map, in-game cognitive challenges were ignored or offloaded to motor response when possible in order to achieve the minimum required goals of the game. From our results we propose a model of immersion in mixed reality gaming that is useful for designers and researchers in this space.