Biblio
As the oil and gas industry's ultimate goal is to uncover efficient and economic ways to produce oil and gas, well optimization studies are crucially important for reservoir engineers. Although this task has a major impact on reservoir productivity, it has been challenging for reservoir engineers to perform since it involves time-consuming flow simulations to search a large solution space for an optimal well plan. Our work aims to provide engineers a) an analytical method to perform static connectivity analysis as a proxy for flow simulation, b) an application to support well optimization using our method and c) an immersive experience that benefits engineers and supports their needs and preferences when performing the design and assessment of well trajectories. For the latter purpose, we explore our tool with three immersive environments: a CAVE with a tracked gamepad; a HMD with a tracked gamepad; and a HMD with a Leap Motion controller. This paper describes our application and its techniques in each of the different immersive environments. This paper also describes our findings from an exploratory evaluation conducted with six reservoir engineers, which provided insight into our application, and allowed us to discuss the potential benefits of immersion for the oil and gas domain.
We present a study examining the impact of physical and cognitive challenge on reported immersion for a mixed reality game called Beach Pong. Contrary to prior findings for desktop games, we find significantly higher reported immersion among players who engage physically, regardless of their actual game performance. Building a mental map of the real, virtual, and sensed world is a cognitive challenge for novices, and this appears to influence immersion: in our study, participants who actively attended to both physical and virtual game elements reported higher immersion levels than those who attended mainly or exclusively to virtual elements. Without an integrated mental map, in-game cognitive challenges were ignored or offloaded to motor response when possible in order to achieve the minimum required goals of the game. From our results we propose a model of immersion in mixed reality gaming that is useful for designers and researchers in this space.