Biblio
Quantum low probability of intercept transmits ciphertext in a way that prevents an eavesdropper possessing the decryption key from recovering the plaintext. It is capable of Gbps communication rates on optical fiber over metropolitan-area distances.
Cyber-physical systems (CPS) are state-of-the-art communication environments that offer various applications with distinct requirements. However, security in CPS is a nonnegotiable concept, since without a proper security mechanism the applications of CPS may risk human lives, the privacy of individuals, and system operations. In this paper, we focus on PHY-layer security approaches in CPS to prevent passive eavesdropping attacks, and we propose an integration of physical layer operations to enhance security. Thanks to the McEliece cryptosystem, error injection is firstly applied to information bits, which are encoded with the forward error correction (FEC) schemes. Golay and Hamming codes are selected as FEC schemes to satisfy power and computational efficiency. Then obtained codewords are transmitted across reliable intermediate relays to the legitimate receiver. As a performance metric, the decoding frame error rate of the eavesdropper is analytically obtained for the fragmentary existence of significant noise between relays and Eve. The simulation results validate the analytical calculations, and the obtained results show that the number of low-quality channels and the selected FEC scheme affects the performance of the proposed model.
Given a code used to send a message to two receivers through a degraded discrete memoryless broadcast channel (DM-BC), the sender wishes to alter the codewords to achieve the following goals: (i) the original broadcast communication continues to take place, possibly at the expense of a tolerable increase of the decoding error probability; and (ii) an additional covert message can be transmitted to the stronger receiver such that the weaker receiver cannot detect the existence of this message. The main results are: (a) feasibility of covert communications is proven by using a random coding argument for general DM-BCs; and (b) necessary conditions for establishing covert communications are described and an impossibility (converse) result is presented for a particular class of DM-BCs. Together, these results characterize the asymptotic fundamental limits of covert communications for this particular class of DM-BCs within an arbitrarily small gap.
Network security and data confidentiality of transmitted information are among the non-functional requirements of industrial wireless sensor networks (IWSNs) in addition to latency, reliability and energy efficiency requirements. Physical layer security techniques are promising solutions to assist cryptographic methods in the presence of an eavesdropper in IWSN setups. In this paper, we propose a physical layer security scheme, which is based on both insertion of an random error vector to forward error correction (FEC) codewords and transmission over decentralized relay nodes. Reed-Solomon and Golay codes are selected as FEC coding schemes and the security performance of the proposed model is evaluated with the aid of decoding error probability of an eavesdropper. The results show that security level is highly based on the location of the eavesdropper and secure communication can be achieved when some of channels between eavesdropper and relay nodes are significantly noisier.
Primary user emulation (PUE) attack causes security issues in a cognitive radio network (CRN) while sensing the unused spectrum. In PUE attack, malicious users transmit an emulated primary signal in spectrum sensing interval to secondary users (SUs) to forestall them from accessing the primary user (PU) spectrum bands. In the present paper, the defense against such attack by Neyman-Pearson criterion is shown in terms of total error probability. Impact of several parameters such as attacker strength, attacker's presence probability, and signal-to-noise ratio on SU is shown. Result shows proposed method protect the harmful effects of PUE attack in spectrum sensing.
Due to the transition from analog to digital format, it possible to use IP-protocol for video surveillance systems. In addition, wireless access, color systems with higher resolution, biometrics, intelligent sensors, software for performing video analytics are becoming increasingly widespread. The paper considers only the calculation of the error probability (BER — Bit Error Rate) depending on the realized value of S/N.
We consider the problem of communicating information over a network secretly and reliably in the presence of a hidden adversary who can eavesdrop and inject malicious errors. We provide polynomial-time distributed network codes that are information-theoretically rate-optimal for this scenario, improving on the rates achievable in prior work by Ngai Our main contribution shows that as long as the sum of the number of links the adversary can jam (denoted by ZO) and the number of links he can eavesdrop on (denoted by ZI) is less than the network capacity (denoted by C) (i.e., ), our codes can communicate (with vanishingly small error probability) a single bit correctly and without leaking any information to the adversary. We then use this scheme as a module to design codes that allow communication at the source rate of C- ZO when there are no security requirements, and codes that allow communication at the source rate of C- ZO- ZI while keeping the communicated message provably secret from the adversary. Interior nodes are oblivious to the presence of adversaries and perform random linear network coding; only the source and destination need to be tweaked. We also prove that the rate-region obtained is information-theoretically optimal. In proving our results, we correct an error in prior work by a subset of the authors in this paper.
We consider the problem of communicating information over a network secretly and reliably in the presence of a hidden adversary who can eavesdrop and inject malicious errors. We provide polynomial-time distributed network codes that are information-theoretically rate-optimal for this scenario, improving on the rates achievable in prior work by Ngai Our main contribution shows that as long as the sum of the number of links the adversary can jam (denoted by ZO) and the number of links he can eavesdrop on (denoted by ZI) is less than the network capacity (denoted by C) (i.e., ), our codes can communicate (with vanishingly small error probability) a single bit correctly and without leaking any information to the adversary. We then use this scheme as a module to design codes that allow communication at the source rate of C- ZO when there are no security requirements, and codes that allow communication at the source rate of C- ZO- ZI while keeping the communicated message provably secret from the adversary. Interior nodes are oblivious to the presence of adversaries and perform random linear network coding; only the source and destination need to be tweaked. We also prove that the rate-region obtained is information-theoretically optimal. In proving our results, we correct an error in prior work by a subset of the authors in this paper.