Visible to the public Biblio

Filters: Keyword is Hypercubes  [Clear All Filters]
2023-05-19
Pan, Aiqiang, Fang, Xiaotao, Yan, Zheng, Dong, Zhen, Xu, Xiaoyuan, Wang, Han.  2022.  Risk-Based Power System Resilience Assessment Considering the Impacts of Hurricanes. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1714—1718.
In this paper, a novel method is proposed to assess the power system resilience considering the impacts of hurricanes. Firstly, the transmission line outage model correlated to wind speed is developed. Then, Probability Load Flow (PLF) considering the random outage of lines and the variation of loads is designed, and Latin Hypercube Sampling (LHS) is used to improve the efficiency of Monte Carlo Simulation (MCS) in solving PLF. Moreover, risk indices, including line overloading, node voltage exceeding limit, load shedding and system collapse, are established to assess the resilience of power systems during hurricanes. The method is tested with a modified IEEE 14-bus system, and simulation results indicate the effectiveness of the proposed approach.
2023-02-03
Zhang, Hua, Su, Xueneng.  2022.  Method for Vulnerability Analysis of Communication Link in Electric Cyber Physical System. 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). :41–46.
This paper conducts simulation analysis on power transmission lines and availability of power communication link based on Latin hypercube sampling. It proposes a new method of vulnerability communication link assessment for electric cyber physical system. Wind power output, transmission line failure and communication link failure of electric cyber physical system are sampled to obtain different operating states of electric cyber physical system. The connectivity of communication links under different operating states of electric cyber physical system is calculated to judge whether the communication nodes of the links are connected with the control master station. According to the connection between the link communication node and the control master station, the switching load and switching load of the electric cyber physical system in different operating states are calculated, and the optimal switching load of the electric cyber physical system in different operating states is obtained. This method can clearly identify the vulnerable link in the electric cyber physical system, so as to monitor the vulnerable link and strengthen the link strength.
2015-04-30
Yang, J.-S., Chang, J.-M., Pai, K.-J., Chan, H.-C..  2015.  Parallel Construction of Independent Spanning Trees on Enhanced Hypercubes. Parallel and Distributed Systems, IEEE Transactions on. PP:1-1.

The use of multiple independent spanning trees (ISTs) for data broadcasting in networks provides a number of advantages, including the increase of fault-tolerance, bandwidth and security. Thus, the designs of multiple ISTs on several classes of networks have been widely investigated. In this paper, we give an algorithm to construct ISTs on enhanced hypercubes Qn,k, which contain folded hypercubes as a subclass. Moreover, we show that these ISTs are near optimal for heights and path lengths. Let D(Qn,k) denote the diameter of Qn,k. If n - k is odd or n - k ∈ {2; n}, we show that all the heights of ISTs are equal to D(Qn,k) + 1, and thus are optimal. Otherwise, we show that each path from a node to the root in a spanning tree has length at most D(Qn,k) + 2. In particular, no more than 2.15 percent of nodes have the maximum path length. As a by-product, we improve the upper bound of wide diameter (respectively, fault diameter) of Qn,k from these path lengths.