Biblio
Over the last few years, there has been an increasing number of studies about facial emotion recognition because of the importance and the impact that it has in the interaction of humans with computers. With the growing number of challenging datasets, the application of deep learning techniques have all become necessary. In this paper, we study the challenges of Emotion Recognition Datasets and we also try different parameters and architectures of the Conventional Neural Networks (CNNs) in order to detect the seven emotions in human faces, such as: anger, fear, disgust, contempt, happiness, sadness and surprise. We have chosen iCV MEFED (Multi-Emotion Facial Expression Dataset) as the main dataset for our study, which is relatively new, interesting and very challenging.
Emotions are a powerful tool in communication and one way that humans show their emotions is through their facial expressions. One of the challenging and powerful tasks in social communications is facial expression recognition, as in non-verbal communication, facial expressions are key. In the field of Artificial Intelligence, Facial Expression Recognition (FER) is an active research area, with several recent studies using Convolutional Neural Networks (CNNs). In this paper, we demonstrate the classification of FER based on static images, using CNNs, without requiring any pre-processing or feature extraction tasks. The paper also illustrates techniques to improve future accuracy in this area by using pre-processing, which includes face detection and illumination correction. Feature extraction is used to extract the most prominent parts of the face, including the jaw, mouth, eyes, nose, and eyebrows. Furthermore, we also discuss the literature review and present our CNN architecture, and the challenges of using max-pooling and dropout, which eventually aided in better performance. We obtained a test accuracy of 61.7% on FER2013 in a seven-classes classification task compared to 75.2% in state-of-the-art classification.
Motions of facial components convey significant information of facial expressions. Although remarkable advancement has been made, the dynamic of facial topology has not been fully exploited. In this paper, a novel facial expression recognition (FER) algorithm called Spatial Temporal Semantic Graph Network (STSGN) is proposed to automatically learn spatial and temporal patterns through end-to-end feature learning from facial topology structure. The proposed algorithm not only has greater discriminative power to capture the dynamic patterns of facial expression and stronger generalization capability to handle different variations but also higher interpretability. Experimental evaluation on two popular datasets, CK+ and Oulu-CASIA, shows that our algorithm achieves more competitive results than other state-of-the-art methods.
As a part of body language, facial expression is a psychological state that reflects the current emotional state of the person. Recognition of facial expressions can help to understand others and enhance communication with others. We propose a facial expression recognition method based on convolutional neural network ensemble learning in this paper. Our model is composed of three sub-networks, and uses the SVM classifier to Integrate the output of the three networks to get the final result. The recognition accuracy of the model's expression on the FER2013 dataset reached 71.27%. The results show that the method has high test accuracy and short prediction time, and can realize real-time, high-performance facial recognition.
Facial expressions are one of the most powerful, natural and immediate means for human being to present their emotions and intensions. In this paper, we present a novel method for fully automatic facial expression recognition. The facial landmarks are detected for characterizing facial expressions. A graph convolutional neural network is proposed for feature extraction and facial expression recognition classification. The experiments were performed on the three facial expression databases. The result shows that the proposed FER method can achieve good recognition accuracy up to 95.85% using the proposed method.
This paper explores the benefits of 3D face modeling for in-the-wild facial expression recognition (FER). Since there is limited in-the-wild 3D FER dataset, we first construct 3D facial data from available 2D dataset using recent advances in 3D face reconstruction. The 3D facial geometry representation is then extracted by deep learning technique. In addition, we also take advantage of manipulating the 3D face, such as using 2D projected images of 3D face as additional input for FER. These features are then fused with that of 2D FER typical network. By doing so, despite using common approaches, we achieve a competent recognition accuracy on Real-World Affective Faces (RAF) database and Static Facial Expressions in the Wild (SFEW 2.0) compared with the state-of-the-art reports. To the best of our knowledge, this is the first time such a deep learning combination of 3D and 2D facial modalities is presented in the context of in-the-wild FER.
Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.
In this paper, a merged convolution neural network (MCNN) is proposed to improve the accuracy and robustness of real-time facial expression recognition (FER). Although there are many ways to improve the performance of facial expression recognition, a revamp of the training framework and image preprocessing renders better results in applications. When the camera is capturing images at high speed, however, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of human facial expression. To solve this problem, we propose a statistical method for recognition results obtained from previous images, instead of using the current recognition output. Experimental results show that the proposed method can satisfactorily recognize seven basic facial expressions in real time.
Deep learning based facial expression recognition (FER) has received a lot of attention in the past few years. Most of the existing deep learning based FER methods do not consider domain knowledge well, which thereby fail to extract representative features. In this work, we propose a novel FER framework, named Facial Motion Prior Networks (FMPN). Particularly, we introduce an addition branch to generate a facial mask so as to focus on facial muscle moving regions. To guide the facial mask learning, we propose to incorporate prior domain knowledge by using the average differences between neutral faces and the corresponding expressive faces as the training guidance. Extensive experiments on three facial expression benchmark datasets demonstrate the effectiveness of the proposed method, compared with the state-of-the-art approaches.
In the past few years, there has been increasing interest in the perception of human expressions and mental states by machines, and Facial Expression Recognition (FER) has attracted increasing attention. Facial Action Unit (AU) is an early proposed method to describe facial muscle movements, which can effectively reflect the changes in people's facial expressions. In this paper, we propose a high-performance facial expression recognition method based on facial action unit, which can run on low-configuration computer and realize video and real-time camera FER. Our method is mainly divided into two parts. In the first part, 68 facial landmarks and image Histograms of Oriented Gradients (HOG) are obtained, and the feature values of action units are calculated accordingly. The second part uses three classification methods to realize the mapping from AUs to FER. We have conducted many experiments on the popular human FER benchmark datasets (CK+ and Oulu CASIA) to demonstrate the effectiveness of our method.