Visible to the public Biblio

Filters: Keyword is privacy and security  [Clear All Filters]
2023-03-31
Zhang, Hongjun, Cheng, Shuyan, Cai, Qingyuan, Jiang, Xiao.  2022.  Privacy security protection based on data life cycle. 2022 World Automation Congress (WAC). :433–436.
Large capacity, fast-paced, diversified and high-value data are becoming a hotbed of data processing and research. Privacy security protection based on data life cycle is a method to protect privacy. It is used to protect the confidentiality, integrity and availability of personal data and prevent unauthorized access or use. The main advantage of using this method is that it can fully control all aspects related to the information system and its users. With the opening of the cloud, attackers use the cloud to recalculate and analyze big data that may infringe on others' privacy. Privacy protection based on data life cycle is a means of privacy protection based on the whole process of data production, collection, storage and use. This approach involves all stages from the creation of personal information by individuals (e.g. by filling out forms online or at work) to destruction after use for the intended purpose (e.g. deleting records). Privacy security based on the data life cycle ensures that any personal information collected is used only for the purpose of initial collection and destroyed as soon as possible.
ISSN: 2154-4824
2022-06-14
Tan, Soo-Fun, Lo, Ka-Man Chirs, Leau, Yu-Beng, Chung, Gwo-Chin, Ahmedy, Fatimah.  2021.  Securing mHealth Applications with Grid-Based Honey Encryption. 2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–5.
Mobile healthcare (mHealth) application and technologies have promised their cost-effectiveness to enhance healthcare quality, particularly in rural areas. However, the increased security incidents and leakage of patient data raise the concerns to address security risks and privacy issues of mhealth applications urgently. While recent mobile health applications that rely on password-based authentication cannot withstand password guessing and cracking attacks, several countermeasures such as One-Time Password (OTP), grid-based password, and biometric authentication have recently been implemented to protect mobile health applications. These countermeasures, however, can be thwarted by brute force attacks, man-in-the-middle attacks and persistent malware attacks. This paper proposed grid-based honey encryption by hybridising honey encryption with grid-based authentication. Compared to recent honey encryption limited in the hardening password attacks process, the proposed grid-based honey encryption can be further employed against shoulder surfing, smudge and replay attacks. Instead of rejecting access as a recent security defence mechanism in mobile healthcare applications, the proposed Grid-based Honey Encryption creates an indistinct counterfeit patient's record closely resembling the real patients' records in light of each off-base speculation legitimate password.
2020-06-26
Salman, Ahmad, El-Tawab, Samy.  2019.  Efficient Hardware/Software Co-Design of Elliptic-Curve Cryptography for the Internet of Things. 2019 International Conference on Smart Applications, Communications and Networking (SmartNets). :1—6.

The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.

2020-01-21
Alexandru, Andreea B., Pappas, George J..  2019.  Encrypted LQG Using Labeled Homomorphic Encryption. Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems. :129–140.
We consider the problem of implementing a Linear Quadratic Gaussian (LQG) controller on a distributed system, while maintaining the privacy of the measurements, state estimates, control inputs and system model. The component sub-systems and actuator outsource the LQG computation to a cloud controller and encrypt their signals and matrices. The encryption scheme used is Labeled Homomorphic Encryption, which supports the evaluation of degree-2 polynomials on encrypted data, by attaching a unique label to each piece of data and using the fact that the outsourced computation is known by the actuator. We write the state estimate update and control computation as multivariate polynomials in the encrypted data and propose an extension to the Labeled Homomorphic Encryption scheme that achieves the evaluation of low-degree polynomials on encrypted data, with degree larger than two. We showcase the numerical results of the proposed protocol for a temperature control application that indicates competitive online times.
2019-03-06
Leung, C. K., Hoi, C. S. H., Pazdor, A. G. M., Wodi, B. H., Cuzzocrea, A..  2018.  Privacy-Preserving Frequent Pattern Mining from Big Uncertain Data. 2018 IEEE International Conference on Big Data (Big Data). :5101-5110.
As we are living in the era of big data, high volumes of wide varieties of data which may be of different veracity (e.g., precise data, imprecise and uncertain data) are easily generated or collected at a high velocity in many real-life applications. Embedded in these big data is valuable knowledge and useful information, which can be discovered by big data science solutions. As a popular data science task, frequent pattern mining aims to discover implicit, previously unknown and potentially useful information and valuable knowledge in terms of sets of frequently co-occurring merchandise items and/or events. Many of the existing frequent pattern mining algorithms use a transaction-centric mining approach to find frequent patterns from precise data. However, there are situations in which an item-centric mining approach is more appropriate, and there are also situations in which data are imprecise and uncertain. Hence, in this paper, we present an item-centric algorithm for mining frequent patterns from big uncertain data. In recent years, big data have been gaining the attention from the research community as driven by relevant technological innovations (e.g., clouds) and novel paradigms (e.g., social networks). As big data are typically published online to support knowledge management and fruition processes, these big data are usually handled by multiple owners with possible secure multi-part computation issues. Thus, privacy and security of big data has become a fundamental problem in this research context. In this paper, we present, not only an item-centric algorithm for mining frequent patterns from big uncertain data, but also a privacy-preserving algorithm. In other words, we present- in this paper-a privacy-preserving item-centric algorithm for mining frequent patterns from big uncertain data. Results of our analytical and empirical evaluation show the effectiveness of our algorithm in mining frequent patterns from big uncertain data in a privacy-preserving manner.
2017-12-20
Shi, Z., Chen, J., Chen, S., Ren, S..  2017.  A lightweight RFID authentication protocol with confidentiality and anonymity. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1631–1634.

Radio Frequency IDentification(RFID) is one of the most important sensing techniques for Internet of Things(IoT) and RFID systems have been applied to various different fields. But an RFID system usually uses open wireless radio wave to communicate and this will lead to a serious threat to its privacy and security. The current popular RFID tags are some low-cost passive tags. Their computation and storage resources are very limited. It is not feasible for them to complete some complicated cryptographic operations. So it is very difficult to protect the security and privacy of an RFID system. Lightweight authentication protocol is considered as an effective approach. Many typical authentication protocols usually use Hash functions so that they require more computation and storage resources. Based on CRC function, we propose a lightweight RFID authentication protocol, which needs less computation and storage resources than Hash functions. This protocol exploits an on-chip CRC function and a pseudorandom number generator to ensure the anonymity and freshness of communications between reader and tag. It provides forward security and confidential communication. It can prevent eavesdropping, location trace, replay attack, spoofing and DOS-attack effectively. It is very suitable to be applied to RFID systems.

2017-08-22
Hubaux, Jean-Pierre.  2016.  Privacy Challenges in Mobile and Pervasive Networks. Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. :1–1.

This last decade has witnessed a wide adoption of connected mobile devices able to capture the context of their owners from embedded sensors (GPS, Wi-Fi, Bluetooth, accelerometers). The advent of mobile and pervasive computing has enabled rich social and contextual applications, but the use of such technologies raises severe privacy issues and challenges. The privacy threats come from diverse adversaries, ranging from curious service providers and other users of the same service to eavesdroppers and curious applications running on the device. The information that can be collected from mobile device owners includes their locations, their social relationships, and their current activity. All of this, once analyzed and combined together through inference, can be very telling about the users' private lives. In this talk, we will describe privacy threats in mobile and pervasive networks. We will also show how to quantify the privacy of the users of such networks and explain how information on co-location can be taken into account. We will describe the role that privacy enhancing technologies (PETs) can play and describe some of them. We will also explain how to prevent apps from sifting too many personal data under Android. We will conclude by mentioning the privacy and security challenges raised by the quantified self and digital medicine