Biblio
The Internet of Things (IoT) is connecting the world in a way humanity has never seen before. With applications in healthcare, agricultural, transportation, and more, IoT devices help in bridging the gap between the physical and the virtual worlds. These devices usually carry sensitive data which requires security and protection in transit and rest. However, the limited power and energy consumption make it harder and more challenging to implementing security protocols, especially Public-Key Cryptosystems (PKC). In this paper, we present a hardware/software co-design for Elliptic-Curve Cryptography (ECC) PKC suitable for lightweight devices. We present the implementation results for our design on an edge node to be used for indoor localization in a healthcare facilities.
Radio Frequency IDentification(RFID) is one of the most important sensing techniques for Internet of Things(IoT) and RFID systems have been applied to various different fields. But an RFID system usually uses open wireless radio wave to communicate and this will lead to a serious threat to its privacy and security. The current popular RFID tags are some low-cost passive tags. Their computation and storage resources are very limited. It is not feasible for them to complete some complicated cryptographic operations. So it is very difficult to protect the security and privacy of an RFID system. Lightweight authentication protocol is considered as an effective approach. Many typical authentication protocols usually use Hash functions so that they require more computation and storage resources. Based on CRC function, we propose a lightweight RFID authentication protocol, which needs less computation and storage resources than Hash functions. This protocol exploits an on-chip CRC function and a pseudorandom number generator to ensure the anonymity and freshness of communications between reader and tag. It provides forward security and confidential communication. It can prevent eavesdropping, location trace, replay attack, spoofing and DOS-attack effectively. It is very suitable to be applied to RFID systems.
This last decade has witnessed a wide adoption of connected mobile devices able to capture the context of their owners from embedded sensors (GPS, Wi-Fi, Bluetooth, accelerometers). The advent of mobile and pervasive computing has enabled rich social and contextual applications, but the use of such technologies raises severe privacy issues and challenges. The privacy threats come from diverse adversaries, ranging from curious service providers and other users of the same service to eavesdroppers and curious applications running on the device. The information that can be collected from mobile device owners includes their locations, their social relationships, and their current activity. All of this, once analyzed and combined together through inference, can be very telling about the users' private lives. In this talk, we will describe privacy threats in mobile and pervasive networks. We will also show how to quantify the privacy of the users of such networks and explain how information on co-location can be taken into account. We will describe the role that privacy enhancing technologies (PETs) can play and describe some of them. We will also explain how to prevent apps from sifting too many personal data under Android. We will conclude by mentioning the privacy and security challenges raised by the quantified self and digital medicine