Visible to the public Biblio

Filters: Author is Ren, S.  [Clear All Filters]
2020-12-21
Wang, H., Zeng, X., Lei, Y., Ren, S., Hou, F., Dong, N..  2020.  Indoor Object Identification based on Spectral Subtraction of Acoustic Room Impulse Response. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1–4.
Object identification in the room environment is a key technique in many advanced engineering applications such as the unidentified object recognition in security surveillance, human identification and barrier recognition for AI robots. The identification technique based on the sound field perturbation analysis is capable of giving immersive identification which avoids the occlusion problem in the traditional vision-based method. In this paper, a new insight into the relation between the object and the variation of the sound field is presented. The sound field difference before and after the object locates in the environment is analyzed using the spectral subtraction based on the room impulse response. The spectral subtraction shows that the energy loss caused by the sound absorption is the essential factor which perturbs the sound field. By using the energy loss with high uniqueness as the extracted feature, an object identification technique is constructed under the classical supervised pattern recognition framework. The experiment in a real room validates that the system has high identification accuracy. In addition, based on the feature property of position insensitivity, this technique can achieve high identifying accuracy with a quite small training data set, which demonstrates that the technique has potential to be used in real engineering applications.
2017-12-20
Shi, Z., Chen, J., Chen, S., Ren, S..  2017.  A lightweight RFID authentication protocol with confidentiality and anonymity. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1631–1634.

Radio Frequency IDentification(RFID) is one of the most important sensing techniques for Internet of Things(IoT) and RFID systems have been applied to various different fields. But an RFID system usually uses open wireless radio wave to communicate and this will lead to a serious threat to its privacy and security. The current popular RFID tags are some low-cost passive tags. Their computation and storage resources are very limited. It is not feasible for them to complete some complicated cryptographic operations. So it is very difficult to protect the security and privacy of an RFID system. Lightweight authentication protocol is considered as an effective approach. Many typical authentication protocols usually use Hash functions so that they require more computation and storage resources. Based on CRC function, we propose a lightweight RFID authentication protocol, which needs less computation and storage resources than Hash functions. This protocol exploits an on-chip CRC function and a pseudorandom number generator to ensure the anonymity and freshness of communications between reader and tag. It provides forward security and confidential communication. It can prevent eavesdropping, location trace, replay attack, spoofing and DOS-attack effectively. It is very suitable to be applied to RFID systems.