Visible to the public Biblio

Filters: Keyword is wireless sensing  [Clear All Filters]
2023-02-24
Sha, Feng, Wei, Ying.  2022.  The Design of Campus Security Early Warning System based on IPv6 Wireless Sensing. 2022 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI). :103—106.
Based on the campus wireless IPv6 network system, using WiFi contactless sensing and positioning technology and action recognition technology, this paper designs a new campus security early warning system. The characteristic is that there is no need to add new monitoring equipment. As long as it is the location covered by the wireless IPv6 network, personnel quantity statistics and personnel body action status display can be realized. It plays an effective monitoring supplement to the places that cannot be covered by video surveillance in the past, and can effectively prevent campus violence or other emergencies.
2017-08-22
Ding, Han, Qian, Chen, Han, Jinsong, Wang, Ge, Jiang, Zhiping, Zhao, Jizhong, Xi, Wei.  2016.  Device-free Detection of Approach and Departure Behaviors Using Backscatter Communication. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :167–177.

Smart environments and security systems require automatic detection of human behaviors including approaching to or departing from an object. Existing human motion detection systems usually require human beings to carry special devices, which limits their applications. In this paper, we present a system called APID to detect arm reaching by analyzing backscatter communication signals from a passive RFID tag on the object. APID does not require human beings to carry any device. The idea is based on the influence of human movements to the vibration of backscattered tag signals. APID is compatible with commodity off-the-shelf devices and the EPCglobal Class-1 Generation-2 protocol. In APID an commercial RFID reader continuously queries tags through emitting RF signals and tags simply respond with their IDs. A USRP monitor passively analyzes the communication signals and reports the approach and departure behaviors. We have implemented the APID system for both single-object and multi-object scenarios in both horizontal and vertical deployment modes. The experimental results show that APID can achieve high detection accuracy.