Visible to the public Biblio

Filters: Keyword is layered security  [Clear All Filters]
2018-09-05
Turnley, J., Wachtel, A., Muñoz-Ramos, K., Hoffman, M., Gauthier, J., Speed, A., Kittinger, R..  2017.  Modeling human-technology interaction as a sociotechnical system of systems. 2017 12th System of Systems Engineering Conference (SoSE). :1–6.
As system of systems (SoS) models become increasingly complex and interconnected a new approach is needed to capture the effects of humans within the SoS. Many real-life events have shown the detrimental outcomes of failing to account for humans in the loop. This research introduces a novel and cross-disciplinary methodology for modeling humans interacting with technologies to perform tasks within an SoS specifically within a layered physical security system use case. Metrics and formulations developed for this new way of looking at SoS termed sociotechnical SoS allow for the quantification of the interplay of effectiveness and efficiency seen in detection theory to measure the ability of a physical security system to detect and respond to threats. This methodology has been applied to a notional representation of a small military Forward Operating Base (FOB) as a proof-of-concept.
2017-08-22
Esiner, Ertem, Datta, Anwitaman.  2016.  Layered Security for Storage at the Edge: On Decentralized Multi-factor Access Control. Proceedings of the 17th International Conference on Distributed Computing and Networking. :9:1–9:10.

In this paper we propose a protocol that allows end-users in a decentralized setup (without requiring any trusted third party) to protect data shipped to remote servers using two factors - knowledge (passwords) and possession (a time based one time password generation for authentication) that is portable. The protocol also supports revocation and recreation of a new possession factor if the older possession factor is compromised, provided the legitimate owner still has a copy of the possession factor. Furthermore, akin to some other recent works, our approach naturally protects the outsourced data from the storage servers themselves, by application of encryption and dispersal of information across multiple servers. We also extend the basic protocol to demonstrate how collaboration can be supported even while the stored content is encrypted, and where each collaborator is still restrained from accessing the data through a multi-factor access mechanism. Such techniques achieving layered security is crucial to (opportunistically) harness storage resources from untrusted entities.