Visible to the public Biblio

Filters: Keyword is Hardware Assurance  [Clear All Filters]
2021-04-09
Lin, T., Shi, Y., Shu, N., Cheng, D., Hong, X., Song, J., Gwee, B. H..  2020.  Deep Learning-Based Image Analysis Framework for Hardware Assurance of Digital Integrated Circuits. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1—6.
We propose an Artificial Intelligence (AI)/Deep Learning (DL)-based image analysis framework for hardware assurance of digital integrated circuits (ICs). Our aim is to examine and verify various hardware information from analyzing the Scanning Electron Microscope (SEM) images of an IC. In our proposed framework, we apply DL-based methods at all essential steps of the analysis. To the best of our knowledge, this is the first such framework that makes heavy use of DL-based methods at all essential analysis steps. Further, to reduce time and effort required in model re-training, we propose and demonstrate various automated or semi-automated training data preparation methods and demonstrate the effectiveness of using synthetic data to train a model. By applying our proposed framework to analyzing a set of SEM images of a large digital IC, we prove its efficacy. Our DL-based methods are fast, accurate, robust against noise, and can automate tasks that were previously performed mainly manually. Overall, we show that DL-based methods can largely increase the level of automation in hardware assurance of digital ICs and improve its accuracy.
2021-03-29
DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.

2019-03-15
Crouch, A., Hunter, E., Levin, P. L..  2018.  Enabling Hardware Trojan Detection and Prevention through Emulation. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.

Hardware Trojans, implantable at a myriad of points within the supply chain, are difficult to detect and identify. By emulating systems on programmable hardware, the authors have created a tool from which to create and evaluate Trojan attack signatures and therefore enable better Trojan detection (for in-service systems) and prevention (for in-design systems).

2017-09-05
Kumar, S. Dinesh, Thapliyal, Himanshu.  2016.  QUALPUF: A Novel Quasi-Adiabatic Logic Based Physical Unclonable Function. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :24:1–24:4.

In the recent years, silicon based Physical Unclonable Function (PUF) has evolved as one of the popular hardware security primitives. PUFs are a class of circuits that use the inherent variations in the Integrated Circuit (IC) manufacturing process to create unique and unclonable IDs. There are various security related applications of PUFs such as IC counterfeiting, piracy detection, secure key management etc. In this paper, we are presenting a novel QUasi-Adiabatic Logic based PUF (QUALPUF) which is designed using energy recovery technique. To the best of our knowledge, this is the first work on the hardware design of PUF using adiabatic logic. The proposed design is energy efficient compared to recent designs of hardware PUFs proposed in the literature. Further, we are proposing a novel bit extraction method for our proposed PUF which improves the space set of challenge-response pairs. QUALPUF is evaluated in security metrics including reliability, uniqueness, uniformity and bit-aliasing. Power and area of QUALPUF is also presented. SPICE simulations show that QUALPUF consumes 0.39μ Watt of power to generate a response bit.