Biblio
While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.
The impact of microarchitectural attacks in Personal Computers (PCs) can be further adapted to and observed in internetworked All Programmable System-on-Chip (AP SoC) platforms. This effort involves the access control or execution of Intellectual Property cores in the FPGA of an AP SoC Victim internetworked with an AP SoC Attacker via Internet Protocol (IP). Three conceptions of attacks were implemented: buffer overflow attack at the stack, return-oriented programming attack, and command-injection-based attack for dynamic reconfiguration in the FPGA. Indeed, a specific preventive countermeasure for each attack is proposed. The functionality of the countermeasures mainly comprises adapted words addition (stack protection) for the first and second attacks and multiple encryption for the third attack. In conclusion, the recommended countermeasures are realizable to counteract the implemented attacks.
Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.
Information-leakage is one of the most important security issues in the current Internet. In Named-Data Networking (NDN), Interest names introduce novel vulnerabilities that can be exploited. By setting up a malware, Interest names can be used to encode critical information (steganography embedded) and to leak information out of the network by generating anomalous Interest traffic. This security threat based on Interest names does not exist in IP network, and it is essential to solve this issue to secure the NDN architecture. This paper performs risk analysis of information-leakage in NDN. We first describe vulnerabilities with Interest names and, as countermeasures, we propose a name-based filter using search engine information, and another filter using one-class Support Vector Machine (SVM). We collected URLs from the data repository provided by Common Crawl and we evaluate the performances of our per-packet filters. We show that our filters can choke drastically the throughput of information-leakage, which makes it easier to detect anomalous Interest traffic. It is therefore possible to mitigate information-leakage in NDN network and it is a strong incentive for future deployment of this architecture at the Internet scale.
Named Data Networking (NDN) is a new network architecture design that led to the evolution of a network architecture based on data-centric. Questions have been raised about how to compare its performance with the old architecture such as IP network which is generally based on Internet Protocol version 4 (IPv4). Differs with the old one, source and destination addresses in the delivery of data are not required on the NDN network because the addresses function is replaced by a data name (Name) which serves to identify the data uniquely. In a computer network, a network routing is an essential factor to support data communication. The network routing on IP network relies only on Routing Information Base (RIB) derived from the IP table on the router. So that, if there is a problem on the network such as there is one node exposed to a dangerous attack, the IP router should wait until the IP table is updated, and then the routing channel is changed. The issue of how to change the routing path without updating IP table has received considerable critical attention. The NDN network has an advantage such as its capability to execute an adaptive forwarding mechanism, which FIB (Forwarding Information Base) of the NDN router keeps information for routing and forwarding planes. Therefore, if there is a problem on the network, the NDN router can detect the problem more quickly than the IP router. The contribution of this study is important to explain the benefit of the forwarding mechanism of the NDN network compared to the IP network forwarding mechanism when there is a node which is suffered a hijack attack.
The Internet of Things (IoT) is an emerging architecture that seeks to interconnect all of the "things" we use on a daily basis. Whereas the Internet originated as a way to connect traditional computing devices in order to share information, IoT includes everything from automobiles to appliances to buildings. As networks and devices become more diverse and disparate in their communication methods and interfaces, traditional host-to host technologies such as Internet Protocol (IP) are challenged to provide the level of data exchange and security needed to operate in this new network paradigm. Named Data Networking (NDN) is a developing Internet architecture that can help implement the IoT paradigm in a more efficient and secure manner. This paper introduces the NDN architecture in comparison to the traditional IP-based architecture and discusses several security concepts pertaining to NDN that make this a powerful technology for implementing the Internet of Things.