Biblio
With the rapid development of artificial intelligence, video target tracking is widely used in the fields of intelligent video surveillance, intelligent transportation, intelligent human-computer interaction and intelligent medical diagnosis. Deep learning has achieved remarkable results in the field of computer vision. The development of deep learning not only breaks through many problems that are difficult to be solved by traditional algorithms, improves the computer's cognitive level of images and videos, but also promotes the progress of related technologies in the field of computer vision. This paper combines the deep learning algorithm and target tracking algorithm to carry out relevant experiments on basketball motion detection video, hoping that the experimental results can be helpful to basketball motion detection video target tracking.
Recently in the vast advancement of Artificial Intelligence, Machine learning and Deep Neural Network (DNN) driven us to the robust applications. Such as Image processing, speech recognition, and natural language processing, DNN Algorithms has succeeded in many drawbacks; especially the trained DNN models have made easy to the researchers to produces state-of-art results. However, sharing these trained models are always a challenging task, i.e. security, and protection. We performed extensive experiments to present some analysis of watermark in DNN. We proposed a DNN model for Digital watermarking which investigate the intellectual property of Deep Neural Network, Embedding watermarks, and owner verification. This model can generate the watermarks to deal with possible attacks (fine tuning and train to embed). This approach is tested on the standard dataset. Hence this model is robust to above counter-watermark attacks. Our model accurately and instantly verifies the ownership of all the remotely expanded deep learning models without affecting the model accuracy for standard information data.
Embedded electronic devices and sensors such as smartphones, smart watches, medical implants, and Wireless Sensor Nodes (WSN) are making the “Internet of Things” (IoT) a reality. Such devices often require cryptographic services such as authentication, integrity and non-repudiation, which are provided by Public-Key Cryptography (PKC). As these devices are severely resource-constrained, choosing a suitable cryptographic system is challenging. Pairing Based Cryptography (PBC) is among the best candidates to implement PKC in lightweight devices. In this research, we present a fast and energy efficient implementation of PBC based on Barreto-Naehrig (BN) curves and optimal Ate pairing using hardware/software co-design. Our solution consists of a hardware-based Montgomery multiplier, and pairing software running on an ARM Cortex A9 processor in a Zynq-7020 System-on-Chip (SoC). The multiplier is protected against simple power analysis (SPA) and differential power analysis (DPA), and can be instantiated with a variable number of processing elements (PE). Our solution improves performance (in terms of latency) over an open-source software PBC implementation by factors of 2.34 and 2.02, for 256- and 160-bit field sizes, respectively, as measured in the Zynq-7020 SoC.
This paper presents an architecture for a discrete, high-entropy hardware random number generator. Because it is constructed out of simple hardware components, its operation is transparent and auditable. Using avalanche noise, a non-deterministic physical phenomenon, the circuit is inherently probabilistic and resists adversarial control. Furthermore, because it compares the outputs from two matched noise sources, it rejects environmental disturbances like RF energy and power supply ripple. The resulting hardware produces more than 0.98 bits of entropy per sample, is inexpensive, has a small footprint, and can be disabled to conserve power when not in use.