Biblio
In this paper a model of secure wireless sensor network (WSN) was developed. This model is able to defend against most of known network attacks and don't significantly reduce the energy power of sensor nodes (SN). We propose clustering as a way of network organization, which allows reducing energy consumption. Network protection is based on the trust level calculation and the establishment of trusted relationships between trusted nodes. The primary purpose of the hierarchical trust management system (HTMS) is to protect the WSN from malicious actions of an attacker. The developed system should combine the properties of energy efficiency and reliability. To achieve this goal the following tasks are performed: detection of illegal actions of an intruder; blocking of malicious nodes; avoiding of malicious attacks; determining the authenticity of nodes; the establishment of trusted connections between authentic nodes; detection of defective nodes and the blocking of their work. The HTMS operation based on the use of Bayes' theorem and calculation of direct and centralized trust values.
With the emergence of the internet of things (IoT) and participatory sensing (PS) paradigms trustworthiness of remotely sensed data has become a vital research question. In this work, we present the design of a trusted sensor, which uses physically unclonable functions (PUFs) as anchor to ensure integrity, authenticity and non-repudiation guarantees on the sensed data. We propose trusted sensors for mobile devices to address the problem of potential manipulation of mobile sensors' readings by exploiting vulnerabilities of mobile device OS in participatory sensing for IoT applications. Preliminary results from our implementation of trusted visual sensor node show that the proposed security solution can be realized without consuming significant amount of resources of the sensor node.
Motor vehicles are widely used, quite valuable, and often targeted for theft. Preventive measures include car alarms, proximity control, and physical locks, which can be bypassed if the car is left unlocked, or if the thief obtains the keys. Reactive strategies like cameras, motion detectors, human patrolling, and GPS tracking can monitor a vehicle, but may not detect car thefts in a timely manner. We propose a fast automatic driver recognition system that identifies unauthorized drivers while overcoming the drawbacks of previous approaches. We factor drivers' trips into elemental driving events, from which we extract their driving preference features that cannot be exactly reproduced by a thief driving away in the stolen car. We performed real world evaluation using the driving data collected from 31 volunteers. Experiment results show we can distinguish the current driver as the owner with 97% accuracy, while preventing impersonation 91% of the time.
Wireless sensor networks (WSNs) are playing a vital role in collecting data about a natural or built environment. WSNs have attractive advantages such as low-cost, low maintains and flexible arrangements for applications. Wireless sensor network has been used for many different applications such as military implementations in a battlefield, an environmental monitoring, and multifunction in health sector. In order to ensure its functionality, especially in malicious environments, security mechanisms become essential. Especially internal attacks have gained prominence and pose most challenging threats to all WSNs. Although, a number of works have been done to discuss a WSN under the internal attacks it has gained little attention. For example, the conventional cryptographic technique does not give the appropriated security to save the network from internal attack that causes by abnormally behaviour at the legitimate nodes in a network. In this paper, we propose an effective algorithm to make an evaluation for detecting internal attack by multi-criteria in real time. This protecting is based on the combination of the multiple pieces of evidences collected from the nodes under an internal attacker in a network. A theory of the decision is carefully discussed based on the Dempster-Shafer Theory (DST). If you really wanted to make sure the designed network works exactly works as you expected, you will be benefited from this algorithm. The advantage of this proposed method is not just its performance in real-time but also it is effective as it does not need the knowledge about the normal or malicious node in advance with very high average accuracy that is close to 100%. It also can be used as one of maintaining tools for the regulations of the deployed WSNs.
In Wireless Sensor Networks (WSNs), data aggregation has been used to reduce bandwidth and energy costs during a data collection process. However, data aggregation, while bringing us the benefit of improving bandwidth usage and energy efficiency, also introduces opportunities for security attacks, thus reducing data delivery reliability. There is a trade-off between bandwidth and energy efficiency and achieving data delivery reliability. In this paper, we present a comparative study on the reliability and efficiency characteristics of different data aggregation approaches using both simulation studies and test bed evaluations. We also analyse the factors that contribute to network congestion and affect data delivery reliability. Finally, we investigate an optimal trade-off between reliability and efficiency properties of the different approaches by using an intermediate approach, called Multi-Aggregator based Multi-Cast (MAMC) data aggregation approach. Our evaluation results for MAMC show that it is possible to achieve reliability and efficiency at the same time.
Privilege Escalation is a common and serious type of security attack. Although experience shows that many applications are vulnerable to such attacks, attackers rarely succeed upon first trial. Their initial probing attempts often fail before a successful breach of access control is achieved. This paper presents an approach to automatically instrument application source code to report events of failed access attempts that may indicate privilege escalation attacks to a run time application protection mechanism. The focus of this paper is primarily on the problem of instrumenting web application source code to detect access control attack events. We evaluated false positives and negatives of our approach using two open source web applications.
We study a sensor network setting in which samples are encrypted individually using different keys and maintained on a cloud storage. For large systems, e.g. those that generate several millions of samples per day, fine-grained sharing of encrypted samples is challenging. Existing solutions, such as Attribute-Based Encryption (ABE) and Key Aggregation Cryptosystem (KAC), can be utilized to address the challenge, but only to a certain extent. They are often computationally expensive and thus unlikely to operate at scale. We propose an algorithmic enhancement and two heuristics to improve KAC's key reconstruction cost, while preserving its provable security. The improvement is particularly significant for range and down-sampling queries – accelerating the reconstruction cost from quadratic to linear running time. Experimental study shows that for queries of size 32k samples, the proposed fast reconstruction techniques speed-up the original KAC by at least 90 times on range and down-sampling queries, and by eight times on general (arbitrary) queries. It also shows that at the expense of splitting the query into 16 sub-queries and correspondingly issuing that number of different aggregated keys, reconstruction time can be reduced by 19 times. As such, the proposed techniques make KAC more applicable in practical scenarios such as sensor networks or the Internet of Things.
Several solutions have recently been proposed to securely estimate sensor positions even when there is malicious location information which distorts the estimate. Some of those solutions are based on the Minimum Mean Square Estimation (MMSE) methods which efficiently estimate sensor positions. Although such solutions can filter out most of malicious information, if an attacker knows the position of a target sensor, the attacker can significantly alter the position information. In this paper, we introduce such a new attack, called Inside-Attack, and a technique that is able to detect and filter out malicious location information. Based on this technique, we propose an algorithm to effectively estimate sensor positions. We illustrate the impact of inside attacks on the existing algorithms and report simulation results concerning our algorithm.
The current Android sensor security model either allows only restrictive read access to sensitive sensors (e.g., an app can only read its own touch data) or requires special install-time permissions (e.g., to read microphone, camera or GPS). Moreover, Android does not allow write access to any of the sensors. Sensing-based security applications therefore crucially rely upon the sanity of the Android sensor security model. In this paper, we show that such a model can be effectively circumvented. Specifically, we build SMASheD, a legitimate framework under the current Android ecosystem that can be used to stealthily sniff as well as manipulate many of the Android's restricted sensors (even touch input). SMASheD exploits the Android Debug Bridge (ADB) functionality and enables a malicious app with only the INTERNET permission to read, and write to, multiple different sensor data files at will. SMASheD is the first framework, to our knowledge, that can sniff and manipulate protected sensors on unrooted Android devices, without user awareness, without constant device-PC connection and without the need to infect the PC. The primary contributions of this work are two-fold. First, we design and develop the SMASheD framework. Second, as an offensive implication of the SMASheD framework, we introduce a wide array of potentially devastating attacks. Our attacks against the touchsensor range from accurately logging the touchscreen input (TouchLogger) to injecting touch events for accessing restricted sensors and resources, installing and granting special permissions to other malicious apps, accessing user accounts, and authenticating on behalf of the user –- essentially almost doing whatever the device user can do (secretively). Our attacks against various physical sensors (motion, position and environmental) can subvert the functionality provided by numerous existing sensing-based security applications, including those used for(continuous) authentication, and authorization.
As people use and interact with more and more wearables and IoT-enabled devices, their private information is being exposed without any privacy protections. However, the limited capabilities of IoT devices makes implementing robust privacy protections challenging. In response, we present CryptoCoP, an energy-efficient, content agnostic privacy and encryption protocol for IoT devices. Eavesdroppers cannot snoop on data protected by CryptoCoP or track users via their IoT devices. We evaluate CryptoCoP and show that the performance and energy overheads are viable in a wide variety of situations, and can be modified to trade off forward secrecy and energy consumption against required key storage on the device.
- « first
- ‹ previous
- 1
- 2
- 3