Visible to the public Biblio

Filters: Keyword is sensor security  [Clear All Filters]
2017-12-20
Alheeti, K. M. A., McDonald-Maier, K..  2017.  An intelligent security system for autonomous cars based on infrared sensors. 2017 23rd International Conference on Automation and Computing (ICAC). :1–5.
Safety and non-safety applications in the external communication systems of self-driving vehicles require authentication of control data, cooperative awareness messages and notification messages. Traditional security systems can prevent attackers from hacking or breaking important system functionality in autonomous vehicles. This paper presents a novel security system designed to protect vehicular ad hoc networks in self-driving and semi-autonomous vehicles that is based on Integrated Circuit Metric technology (ICMetrics). ICMetrics has the ability to secure communication systems in autonomous vehicles using features of the autonomous vehicle system itself. This security system is based on unique extracted features from vehicles behaviour and its sensors. Specifically, features have been extracted from bias values of infrared sensors which are used alongside semantically extracted information from a trace file of a simulated vehicular ad hoc network. The practical experimental implementation and evaluation of this system demonstrates the efficiency in identifying of abnormal/malicious behaviour typical for an attack.
Lacerda, A., Rodrigues, J., Macedo, J., Albuquerque, E..  2017.  Deployment and analysis of honeypots sensors as a paradigm to improve security on systems. 2017 Internet Technologies and Applications (ITA). :64–68.
This article is about study of honeypots. In this work, we use some honeypot sensors deployment and analysis to identify, currently, what are the main attacks and security breaches explored by attackers to compromise systems. For example, a common server or service exposed to the Internet can receive a million of hits per day, but sometimes would not be easy to identify the difference between legitimate access and an attacker trying to scan, and then, interrupt the service. Finally, the objective of this research is to investigate the efficiency of the honeypots sensors to identify possible safety gaps and new ways of attacks. This research aims to propose some guidelines to avoid or minimize the damage caused by these attacks in real systems.
Pritchard, S. W., Hancke, G. P., Abu-Mahfouz, A. M..  2017.  Security in software-defined wireless sensor networks: Threats, challenges and potential solutions. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). :168–173.
A Software-Defined Wireless Sensor Network (SD-WSN) is a recently developed model which is expected to play a large role not only in the development of the Internet of Things (IoT) paradigm but also as a platform for other applications such as smart water management. This model makes use of a Software-Defined Networking (SDN) approach to manage a Wireless Sensor Network (WSN) in order to solve most of the inherent issues surrounding WSNs. One of the most important aspects of any network, is security. This is an area that has received little attention within the development of SDWSNs, as most research addresses security concerns within SDN and WSNs independently. There is a need for research into the security of SDWSN. Some concepts from both SDN and WSN security can be adjusted to suit the SDWSN model while others cannot. Further research is needed into consolidating SDN and WSN security measures to consider security in SDWSN. Threats, challenges and potential solutions to securing SDWSN are presented by considering both the WSN and SDN paradigms.
Kim, M., Cho, H..  2017.  Secure Data Collection in Spatially Clustered Wireless Sensor Networks. 2017 25th International Conference on Systems Engineering (ICSEng). :268–276.
A wireless sensor network (WSN) can provide a low cost and flexible solution to sensing and monitoring for large distributed applications. To save energy and prolong the network lifetime, the WSN is often partitioned into a set of spatial clusters. Each cluster includes sensor nodes with similar sensing data, and only a few sensor nodes (samplers) report their sensing data to a base node. Then the base node may predict the missed data of non-samplers using the spatial correlation between sensor nodes. The problem is that the WSN is vulnerable to internal security threat such as node compromise. If the samplers are compromised and report incorrect data intentionally, then the WSN should be contaminated rapidly due to the process of data prediction at the base node. In this paper, we propose three algorithms to detect compromised samplers for secure data collection in the WSN. The proposed algorithms leverage the unique property of spatial clustering to alleviate the overhead of compromised node detection. Experiment results indicate that the proposed algorithms can identify compromised samplers with a high accuracy and low energy consumption when as many as 50% sensor nodes are misbehaving.
Sándor, H., Genge, B., Szántó, Z..  2017.  Sensor data validation and abnormal behavior detection in the Internet of Things. 2017 16th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
Internet of Things (IoT) and its various application domains are radically changing the lives of people, providing smart services which will ultimately constitute integral components of the living environment. The services of IoT operate based on the data flows collected from the different sensors and actuators. In this respect, the correctness and security of the sensor data transported over the IoT system is a crucial factor in ensuring the correct functioning of the IoT services. In this work, we present a method that can detect abnormal sensor events based on “apriori” knowledge of the behavior of the monitored process. The main advantage of the proposed methodology is that it builds on well-established theoretical works, while delivering a practical technique with low computational requirements. As a result, the developed technique can be hosted on various components of an IoT system. The developed approach is evaluated through real-world use-cases.
Wampler, J. A., Hsieh, C., Toth, A..  2017.  Efficient distribution of fragmented sensor data for obfuscation. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :695–700.
The inherent nature of unattended sensors makes these devices most vulnerable to detection, exploitation, and denial in contested environments. Physical access is often cited as the easiest way to compromise any device or network. A new mechanism for mitigating these types of attacks developed under the Assistant Secretary of Defense for Research and Engineering, ASD(R&E) project, “Smoke Screen in Cyberspace”, was previously demonstrated in a live, over-the-air experiment. Smoke Screen encrypts, slices up, and disburses redundant fragments of files throughout the network. This paper describes enhancements to the disbursement of the file fragments routing improving the efficiency and time to completion of fragment distribution by defining the exact route, fragments should take to the destination. This is the first step in defining a custom protocol for the discovery of participating nodes and the efficient distribution of fragments in a mobile network. Future work will focus on the movement of fragments to avoid traffic analysis and avoid the collection of the entire fragment set that would enable an adversary to reconstruct the original piece of data.
2017-09-05
Basan, Alexander, Basan, Elena, Makarevich, Oleg.  2016.  Development of the Hierarchal Trust Management System for Mobile Cluster-based Wireless Sensor Network. Proceedings of the 9th International Conference on Security of Information and Networks. :116–122.

In this paper a model of secure wireless sensor network (WSN) was developed. This model is able to defend against most of known network attacks and don't significantly reduce the energy power of sensor nodes (SN). We propose clustering as a way of network organization, which allows reducing energy consumption. Network protection is based on the trust level calculation and the establishment of trusted relationships between trusted nodes. The primary purpose of the hierarchical trust management system (HTMS) is to protect the WSN from malicious actions of an attacker. The developed system should combine the properties of energy efficiency and reliability. To achieve this goal the following tasks are performed: detection of illegal actions of an intruder; blocking of malicious nodes; avoiding of malicious attacks; determining the authenticity of nodes; the establishment of trusted connections between authentic nodes; detection of defective nodes and the blocking of their work. The HTMS operation based on the use of Bayes' theorem and calculation of direct and centralized trust values.

Haider, Ihtesham, Höberl, Michael, Rinner, Bernhard.  2016.  Trusted Sensors for Participatory Sensing and IoT Applications Based on Physically Unclonable Functions. Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and Security. :14–21.

With the emergence of the internet of things (IoT) and participatory sensing (PS) paradigms trustworthiness of remotely sensed data has become a vital research question. In this work, we present the design of a trusted sensor, which uses physically unclonable functions (PUFs) as anchor to ensure integrity, authenticity and non-repudiation guarantees on the sensed data. We propose trusted sensors for mobile devices to address the problem of potential manipulation of mobile sensors' readings by exploiting vulnerabilities of mobile device OS in participatory sensing for IoT applications. Preliminary results from our implementation of trusted visual sensor node show that the proposed security solution can be realized without consuming significant amount of resources of the sensor node.

Markwood, Ian D., Liu, Yao.  2016.  Vehicle Self-Surveillance: Sensor-Enabled Automatic Driver Recognition. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :425–436.

Motor vehicles are widely used, quite valuable, and often targeted for theft. Preventive measures include car alarms, proximity control, and physical locks, which can be bypassed if the car is left unlocked, or if the thief obtains the keys. Reactive strategies like cameras, motion detectors, human patrolling, and GPS tracking can monitor a vehicle, but may not detect car thefts in a timely manner. We propose a fast automatic driver recognition system that identifies unauthorized drivers while overcoming the drawbacks of previous approaches. We factor drivers' trips into elemental driving events, from which we extract their driving preference features that cannot be exactly reproduced by a thief driving away in the stolen car. We performed real world evaluation using the driving data collected from 31 volunteers. Experiment results show we can distinguish the current driver as the owner with 97% accuracy, while preventing impersonation 91% of the time.

Huang, Xu, Ahmed, Muhammad R., Rojas, Raul Fernandez, Cui, Hongyan, Aseeri, Mohammed.  2016.  Effective Algorithm for Protecting WSNs from Internal Attacks in Real-time. Proceedings of the Australasian Computer Science Week Multiconference. :40:1–40:7.

Wireless sensor networks (WSNs) are playing a vital role in collecting data about a natural or built environment. WSNs have attractive advantages such as low-cost, low maintains and flexible arrangements for applications. Wireless sensor network has been used for many different applications such as military implementations in a battlefield, an environmental monitoring, and multifunction in health sector. In order to ensure its functionality, especially in malicious environments, security mechanisms become essential. Especially internal attacks have gained prominence and pose most challenging threats to all WSNs. Although, a number of works have been done to discuss a WSN under the internal attacks it has gained little attention. For example, the conventional cryptographic technique does not give the appropriated security to save the network from internal attack that causes by abnormally behaviour at the legitimate nodes in a network. In this paper, we propose an effective algorithm to make an evaluation for detecting internal attack by multi-criteria in real time. This protecting is based on the combination of the multiple pieces of evidences collected from the nodes under an internal attacker in a network. A theory of the decision is carefully discussed based on the Dempster-Shafer Theory (DST). If you really wanted to make sure the designed network works exactly works as you expected, you will be benefited from this algorithm. The advantage of this proposed method is not just its performance in real-time but also it is effective as it does not need the knowledge about the normal or malicious node in advance with very high average accuracy that is close to 100%. It also can be used as one of maintaining tools for the regulations of the deployed WSNs.

Naureen, Ayesha, Zhang, Ning.  2016.  A Comparative Study of Data Aggregation Approaches for Wireless Sensor Networks. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :125–128.

In Wireless Sensor Networks (WSNs), data aggregation has been used to reduce bandwidth and energy costs during a data collection process. However, data aggregation, while bringing us the benefit of improving bandwidth usage and energy efficiency, also introduces opportunities for security attacks, thus reducing data delivery reliability. There is a trade-off between bandwidth and energy efficiency and achieving data delivery reliability. In this paper, we present a comparative study on the reliability and efficiency characteristics of different data aggregation approaches using both simulation studies and test bed evaluations. We also analyse the factors that contribute to network congestion and affect data delivery reliability. Finally, we investigate an optimal trade-off between reliability and efficiency properties of the different approaches by using an intermediate approach, called Multi-Aggregator based Multi-Cast (MAMC) data aggregation approach. Our evaluation results for MAMC show that it is possible to achieve reliability and efficiency at the same time.

Zhu, Jun, Chu, Bill, Lipford, Heather.  2016.  Detecting Privilege Escalation Attacks Through Instrumenting Web Application Source Code. Proceedings of the 21st ACM on Symposium on Access Control Models and Technologies. :73–80.

Privilege Escalation is a common and serious type of security attack. Although experience shows that many applications are vulnerable to such attacks, attackers rarely succeed upon first trial. Their initial probing attempts often fail before a successful breach of access control is achieved. This paper presents an approach to automatically instrument application source code to report events of failed access attempts that may indicate privilege escalation attacks to a run time application protection mechanism. The focus of this paper is primarily on the problem of instrumenting web application source code to detect access control attack events. We evaluated false positives and negatives of our approach using two open source web applications.

Dang, Hung, Chong, Yun Long, Brun, Francois, Chang, Ee-Chien.  2016.  Practical and Scalable Sharing of Encrypted Data in Cloud Storage with Key Aggregation. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :69–80.

We study a sensor network setting in which samples are encrypted individually using different keys and maintained on a cloud storage. For large systems, e.g. those that generate several millions of samples per day, fine-grained sharing of encrypted samples is challenging. Existing solutions, such as Attribute-Based Encryption (ABE) and Key Aggregation Cryptosystem (KAC), can be utilized to address the challenge, but only to a certain extent. They are often computationally expensive and thus unlikely to operate at scale. We propose an algorithmic enhancement and two heuristics to improve KAC's key reconstruction cost, while preserving its provable security. The improvement is particularly significant for range and down-sampling queries – accelerating the reconstruction cost from quadratic to linear running time. Experimental study shows that for queries of size 32k samples, the proposed fast reconstruction techniques speed-up the original KAC by at least 90 times on range and down-sampling queries, and by eight times on general (arbitrary) queries. It also shows that at the expense of splitting the query into 16 sub-queries and correspondingly issuing that number of different aggregated keys, reconstruction time can be reduced by 19 times. As such, the proposed techniques make KAC more applicable in practical scenarios such as sensor networks or the Internet of Things.

Won, Jongho, Bertino, Elisa.  2016.  Inside Attack Filtering for Robust Sensor Localization. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :931–936.

Several solutions have recently been proposed to securely estimate sensor positions even when there is malicious location information which distorts the estimate. Some of those solutions are based on the Minimum Mean Square Estimation (MMSE) methods which efficiently estimate sensor positions. Although such solutions can filter out most of malicious information, if an attacker knows the position of a target sensor, the attacker can significantly alter the position information. In this paper, we introduce such a new attack, called Inside-Attack, and a technique that is able to detect and filter out malicious location information. Based on this technique, we propose an algorithm to effectively estimate sensor positions. We illustrate the impact of inside attacks on the existing algorithms and report simulation results concerning our algorithm.

Mohamed, Manar, Shrestha, Babins, Saxena, Nitesh.  2016.  SMASheD: Sniffing and Manipulating Android Sensor Data. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :152–159.

The current Android sensor security model either allows only restrictive read access to sensitive sensors (e.g., an app can only read its own touch data) or requires special install-time permissions (e.g., to read microphone, camera or GPS). Moreover, Android does not allow write access to any of the sensors. Sensing-based security applications therefore crucially rely upon the sanity of the Android sensor security model. In this paper, we show that such a model can be effectively circumvented. Specifically, we build SMASheD, a legitimate framework under the current Android ecosystem that can be used to stealthily sniff as well as manipulate many of the Android's restricted sensors (even touch input). SMASheD exploits the Android Debug Bridge (ADB) functionality and enables a malicious app with only the INTERNET permission to read, and write to, multiple different sensor data files at will. SMASheD is the first framework, to our knowledge, that can sniff and manipulate protected sensors on unrooted Android devices, without user awareness, without constant device-PC connection and without the need to infect the PC. The primary contributions of this work are two-fold. First, we design and develop the SMASheD framework. Second, as an offensive implication of the SMASheD framework, we introduce a wide array of potentially devastating attacks. Our attacks against the touchsensor range from accurately logging the touchscreen input (TouchLogger) to injecting touch events for accessing restricted sensors and resources, installing and granting special permissions to other malicious apps, accessing user accounts, and authenticating on behalf of the user –- essentially almost doing whatever the device user can do (secretively). Our attacks against various physical sensors (motion, position and environmental) can subvert the functionality provided by numerous existing sensing-based security applications, including those used for(continuous) authentication, and authorization.

2017-05-17
Snader, Robin, Kravets, Robin, Harris, III, Albert F..  2016.  CryptoCoP: Lightweight, Energy-efficient Encryption and Privacy for Wearable Devices. Proceedings of the 2016 Workshop on Wearable Systems and Applications. :7–12.

As people use and interact with more and more wearables and IoT-enabled devices, their private information is being exposed without any privacy protections. However, the limited capabilities of IoT devices makes implementing robust privacy protections challenging. In response, we present CryptoCoP, an energy-efficient, content agnostic privacy and encryption protocol for IoT devices. Eavesdroppers cannot snoop on data protected by CryptoCoP or track users via their IoT devices. We evaluate CryptoCoP and show that the performance and energy overheads are viable in a wide variety of situations, and can be modified to trade off forward secrecy and energy consumption against required key storage on the device.