Visible to the public Biblio

Filters: Keyword is sensor security  [Clear All Filters]
2022-04-19
Gharib, Anastassia, Ibnkahla, Mohamed.  2021.  Security Aware Cluster Head Selection with Coverage and Energy Optimization in WSNs for IoT. ICC 2021 - IEEE International Conference on Communications. :1–6.
Nodes in wireless Internet of Things (IoT) sensor networks are heterogeneous in nature. This heterogeneity can come from energy and security resources available at the node level. Besides, these resources are usually limited. Efficient cluster head (CH) selection in rounds is the key to preserving energy resources of sensor nodes. However, energy and security resources are contradictory to one another. Therefore, it is challenging to ensure CH selection with appropriate security resources without decreasing energy efficiency. Coverage and energy optimization subject to a required security level can form a solution to the aforementioned trade-off. This paper proposes a security level aware CH selection algorithm in wireless sensor networks for IoT. The proposed method considers energy and security level updates for nodes and coverage provided by associated CHs. The proposed method performs CH selection in rounds and in a centralized parallel processing way, making it applicable to the IoT scenario. The proposed algorithm is compared to existing traditional and emerging CH selection algorithms that apply security mechanisms in terms of energy and security efficiencies.
Kumar, Vipin, Malik, Navneet.  2021.  Dynamic Key Management Scheme for Clustered Sensor Networks with Node Addition Support. 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM). :102–107.
A sensor network is wireless with tiny nodes and widely used in various applications. To track the event and collect the data from a remote area or a hostile area sensor network is used. A WSN collects wirelessly connected tiny sensors with minimal resources like the battery, computation power, and memory. When a sensor collects data, it must be transferred to the control center through the gateway (Sink), and it must be transferred safely. For secure transfer of data in the network, the routing protocol must be safe and can use the cryptography method for authentication and confidentiality. An essential issue in WSN structure is the key management. WSN relies on the strength of the communicating devices, battery power, and sensor nodes to communicate in the wireless environment over a limited region. Due to energy and memory limitations, the construction of a fully functional network needs to be well arranged. Several techniques are available in the current literature for such key management techniques. Among the distribution of key over the network, sharing private and public keys is the most important. Network security is not an easy problem because of its limited resources, and these networks are deployed in unattended areas where they work without any human intervention. These networks are used to monitor buildings and airports, so security is always a major issue for these networks. In this paper, we proposed a dynamic key management scheme for the clustered sensor network that also supports the addition of a new node in the network later. Keys are dynamically generated and securely distributed to communication parties with the help of a cluster head. We verify the immunity of the scheme against various attacks like replay attack and node captured attacker. A simulation study was also done on energy consumption for key setup and refreshed the keys. Security analysis of scheme shows batter resiliency against node capture attack.
Rodriguez, Daniel, Wang, Jing, Li, Changzhi.  2021.  Spoofing Attacks to Radar Motion Sensors with Portable RF Devices. 2021 IEEE Radio and Wireless Symposium (RWS). :73–75.
Radar sensors have shown great potential for surveillance and security authentication applications. However, a thorough analysis of their vulnerability to spoofing or replay attacks has not been performed yet. In this paper, the feasibility of performing spoofing attacks to radar sensor is studied and experimentally verified. First, a simple binary phase-shift keying system was used to generate artificial spectral components in the radar's demodulated signal. Additionally, an analog phase shifter was driven by an arbitrary signal generator to mimic the human cardio-respiratory motion. Characteristic time and frequency domain cardio-respiratory human signatures were successfully generated, which opens possibilities to perform spoofing attacks to surveillance and security continuous authentication systems based on microwave radar sensors.
Alqarni, Hussain, Alnahari, Wael, Quasim, Mohammad Tabrez.  2021.  Internet of Things (IoT) Security Requirements: Issues Related to Sensors. 2021 National Computing Colleges Conference (NCCC). :1–6.
The last couple of years have seen IoT-enabled sensors continuing to experience massive growth. Sensors have enhanced the possibility of large-scale IoT deployments in grid systems, vehicles, homes, and so forth. A network that incorporates different embedded systems has the underlying capability of transmitting information and receiving instructions through distributed sensor networks. Sensors are especially essential in gathering different pieces of information that relate to different IoT devices. However, security has become a critical concern for sensor networks that are enabled by the IoT. This is partly because of their design limitations like limited memory, weak processing capability, weak processing ability, and exposure to entities that are malicious. Even more, some ad hoc wireless sensor networks that are enabled by IoT are to some extent also prone to frequent changes in topology. This dynamic aspect tends to aggravate the security issues that are associated with sensors, thus enhancing the need to find a lasting solution. This paper sheds light on the IoT security requirements with special attention to issues related to sensors.
Ammari, Habib M..  2021.  Achieving Physical Security through K-Barrier Coverage in Three-Dimensional Stealthy Lattice Wireless Sensor Networks. 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :306–314.
Physical security is essential to safeguarding critical areas. Here, we focus on the physical security problem in three-dimensional (3D) stealthy lattice wireless sensor networks using a 3D sensor belt around a critical space. Specifically, we propose a theoretical framework to investigate the 3D k-barrier coverage problem, where any path crossing this belt intersects with the sensing range of at least k sensors. Precisely, we study this problem from a tiling viewpoint, where the sensing ranges of the sensors are touching (or kissing) each other. We analyze various 3D deterministic sensor deployment methods yielding simple cubic, body centered cubic, face centered cubic, and hexagonal close-packed lattice wireless sensor networks. First, using the concept of the unit cell covered volume ratio, we prove that none of these 3D lattices guarantee k-barrier coverage. Second, to remedy this problem, we consider the great rhombicuboctahedron (GR), a polyhedral space-filler. We introduce the concept of intruder's abstract paths along a 3D k-barrier covered belt, and compute their number. Also, we propose a polynomial representation for all abstract paths. In addition, we compute the number of sensors deployed over a 3D k-barrier covered belt using GR. Third, we corroborate our analysis with numerical and simulation results.
Wagle, S.K., Bazilraj, A.A, Ray, K.P..  2021.  Energy Efficient Security Solution for Attacks on Wireless Sensor Networks. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :313–318.
Wireless Sensor Networks (WSN) are gaining popularity as being the backbone of Cyber physical systems, IOT and various data acquisition from sensors deployed in remote, inaccessible terrains have remote deployment. However due to remote deployment, WSN is an adhoc network of large number of sensors either heli-dropped in inaccessible terrain like volcanoes, Forests, border areas are highly energy deficient and available in large numbers. This makes it the right soup to become vulnerable to various kinds of Security attacks. The lack of energy and resources makes it deprived of developing a robust security code for mitigation of various kinds of attacks. Many attempts have been made to suggest a robust security Protocol. But these consume so much energy, bandwidth, processing power, memory and other resources that the sole purpose of data gathering from inaccessible terrain from energy deprived sensors gets defeated. This paper makes an attempt to study the types of attacks on different layers of WSN and the examine the recent trends in development of various security protocols to mitigate the attacks. Further, we have proposed a simple, lightweight but powerful security protocol known as Simple Sensor Security Protocol (SSSP), which captures the uniqueness of WSN and its isolation from internet to develop an energy efficient security solution.
Wu, Haiwei, Wu, Hanling.  2021.  Research on Computer Network Information Security Problems and Prevention Based on Wireless Sensor Network. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1015–1018.
With the continuous improvement of China's scientific and technological level, computer network has become an indispensable part of people's daily life. It can not only effectively improve the efficiency of production and life, and shorten the distance between people, but also further promote the speed of China's social and economic development, which has a positive impact on the realization of China's modernization. Under the new information security demand environment at present, we should pay attention to the related information security work and formulate effective security measures and strategies. In order to effectively prevent these information security problems, people should actively adopt firewall technology, encryption technology, network access control technology and network virus prevention technology for effective protection. This paper analyzes the security problems in the application of wireless sensor networks and explores the mechanism of defending information security, hoping to strengthen the security and stability of wireless sensor networks through effective measures, so that people can better enjoy the convenience brought by the network age.
2022-03-01
Kaur, Rajwinder, Kaur Sandhu, Jasminder.  2021.  A Study on Security Attacks in Wireless Sensor Network. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :850–855.
Wireless Sensor Network (WSN)is the most promising area which is widely used in the field of military, healthcare systems, flood control, and weather forecasting system. In WSN every node is connected with another node and exchanges the information from one to another. While sending data between nodes data security is an important factor. Security is a vital issue in the area of networking. This paper addresses the issue of security in terms of distinct attacks and their solutions provided by the different authors. Whenever data is transferred from source to destination then it follows some route so there is a possibility of a malicious node in the network. It is a very difficult task to identify the malicious node present in the network. Insecurity intruder attacks on data packets that are transferred from one node to another node. While transferring the data from source to destination node hacker hacks the data and changes the actual data. In this paper, we have discussed the numerous security solution provided by the different authors and they had used the Machine Learning (ML) approach to handle the attacks. Various ML techniques are used to determine the authenticity of the node. Network attacks are elaborated according to the layer used for WSN architecture. In this paper, we will categorize the security attacks according to layer-wise and type-wise and represent the solution using the ML technique for handling the security attack.
2022-02-07
Elbahadır, Hamza, Erdem, Ebubekir.  2021.  Modeling Intrusion Detection System Using Machine Learning Algorithms in Wireless Sensor Networks. 2021 6th International Conference on Computer Science and Engineering (UBMK). :401–406.
Wireless sensor networks (WSN) are used to perceive many data such as temperature, vibration, pressure in the environment and to produce results; it is widely used, including in critical fields such as military, intelligence and health. However, because of WSNs have different infrastructure and architecture than traditional networks, different security measures must be taken. In this study, an intrusion detection system (IDS) is modeled to ensure WSN security. Since the signature, misuse and anomaly based detection methods for intrusion detection systems are insufficient to provide security alone, a hybrid model is proposed in which these methods are used together. In the hybrid model, anomaly rules were defined for attack detection, and machine learning algorithms BayesNet, J48 and Random Forest were used to classify normal and abnormal traffic. Unlike the studies in the literature, CSE-CIC-IDS2018, the most up-to-date data set, was used to create attack profiles. Considering both hardware constraints and battery capacities of WSNs; the data was pre-processed in accordance with data mining principles. The results showed that the developed model has high accuracy and low false alarm rate.
2021-12-20
Dinky, Hemlata, Tanwar, Rajesh.  2021.  Enhancement of Security by Infrared Array Sensor Based IOT System. 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM). :108–112.
In this research we have explained to set up an Infrared Array Sensor system that is IOT based in order to provide security at remote location. We have tried to Establishment of cloud environment to host IOT application & Development of IOT Application using Asp.net with C\# programming platform. We have Integrated IOT with Infrared Array sensors in order to implement proposed work. In this research camera captures the external event and sent signal to Infrared grid array sensor. Internet of Things (IoT) would enable applications of utmost societal value including smart cities, smart grids & smart healthcare. For majority of such applications, strict dependability requirements are placed on IOT performance, & sensor data as well as actuator commands must be delivered reliably & timely.
2021-11-08
Hörmann, Leander B., Pichler-Scheder, Markus, Kastl, Christian, Bernhard, Hans-Peter, Priller, Peter, Springer, Andreas.  2020.  Location-Based Trustworthiness of Wireless Sensor Nodes Using Optical Localization. 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM). :1–4.
A continually growing number of sensors is required for monitoring industrial processes and for continuous data acquisition from industrial plants and devices. The cabling of sensors represent a considerable effort and potential source of error, which can be avoided by using wireless sensor nodes. These wireless sensor nodes form a wireless sensor network (WSN) to efficiently transmit data to the destination. For the acceptance of WSNs in industry, it is important to build up networks with high trustworthiness. The trustworthiness of the WSN depends not only on a secure wireless communication but also on the ability to detect modifications at the wireless sensor nodes itself. This paper presents the enhancement of the WSN's trustworthiness using an optical localization system. It can be used for the preparation phase of the WSN and also during operation to track the positions of the wireless sensor nodes and detect spatial modification. The location information of the sensor nodes can also be used to rate their trustworthiness.
Zhu, Tian, Tong, Fei.  2020.  A Cluster-Based Cooperative Jamming Scheme for Secure Communication in Wireless Sensor Network. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–5.
The environment of wireless sensor networks (WSNs) makes the communication not only have the broadcast nature of wireless transmission, but also be limited to the low power and communication capability of sensor equipment. Both of them make it hard to ensure the confidentiality of communication. In this paper, we propose a cluster-based cooperative jamming scheme based on physical layer security for WSNs. The mathematical principle of the scheme is based on the design principle of code division multiple access. By using the orthogonality of orthogonal vectors, the legitimate receiver can effectively eliminate the noise, which is generated by the cooperative jamming nodes to disturb the eavesdropper. This scheme enables the legitimate receiver to ensure a strong communication confidentiality even if there is no location or channel advantage comparing with eavesdroppers. Through extensive simulations, the security performance of the proposed scheme is investigated in terms of secrecy rate.
Hörmann, Leander B., Kastl, Christian, Bernhard, Hans-Peter, Priller, Peter, Springer, Andreas.  2020.  Lifetime Security Concept for Industrial Wireless Sensor Networks. 2020 16th IEEE International Conference on Factory Communication Systems (WFCS). :1–8.
Secure wireless communication is essential for most industrial applications. The secure and reliable control of processes as well as the data integrity of measured values are key targets in these applications. The industrial Internet-of-Things (IIoT) tries to connect an increasing number of sensors wirelessly. The wireless sensors form wireless sensor networks (WSNs). However, wireless sensor nodes are exposed to various security threats ranging from physical modification on the device itself to remote attacks via the communication channel. It is important to secure the complete lifetime of the wireless sensor nodes and other system components. This includes the production phase, shipping, preparation phase and operational phase. This paper presents a lifetime security concept for a wireless sensor network applied in automotive test beds. In this application scenario, the wireless sensor nodes are used to capture various temperatures in an automotive unit under test. In order to indicate the current state of trustworthiness of the system, a trustworthiness indicator is implemented which is shown to the user. An evaluation of the impact of encrypted communication on power consumption shows that the increase is negligible, and can be expected to be provided by the wireless sensor node's power supply without reducing the node lifetime.
Belej, Olexander.  2020.  Development of a Technique for Detecting "Distributed Denial-of-Service Attacks" in Security Systems of Wireless Sensor Network. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). 1:316–319.
A distributed denial of service attack is a major security challenge in modern communications networks. In this article, we propose models that capture all the key performance indicators of synchronized denial of service protection mechanisms. As a result of the conducted researches, it is found out that thanks to the method of delay detection it is possible to recognize semi-open connections that are caused by synchronous flood and other attacks at an early stage. The study provides a mechanism for assessing the feasibility of introducing and changing the security system of a wireless sensor network. The proposed methodology will allow you to compare the mechanisms of combating denial of service for synchronized failures and choose the optimal protection settings in real-time.
Huaynacho, Yoni D., Huaynacho, Abel S., Chavez, Yaneth.  2020.  Design and Implementation of a Security System Created by RF Using Controllers with Sensors in EPIE. 2020 X International Conference on Virtual Campus (JICV). :1–4.
This work focuses on the design and implementation of a microcontroller for apply all the knowledge acquired during Engineering Electronics career. In order to improve the knowledge about RF technologies, security system have been created, which increases the number of applications used in these days. This design utilizes light sensors as the end device for detecting any changes of resistance. The results show that the designed system can send and receive data until 100 meters of distance between module sides (receiver-transmitter). This security system designed using PIC 16F84 microcontroller as entire brain of the system with sensors, has been successfully designed and implement considering some factors such as economy, availability of components and durability in the design process.
You, Guoping, Zhu, Yingli.  2020.  Structure and Key Technologies of Wireless Sensor Network. 2020 Cross Strait Radio Science Wireless Technology Conference (CSRSWTC). :1–2.
With the improvement of scientific and technological level in China, wireless sensor network technology has been widely promoted and applied, which has now been popularized to various fields of society from military defense. Wireless sensor network combines sensor technology, communication technology and computer technology together, and has the ability of information collection, transmission and processing. In this paper, the structure of wireless sensor network and node localization technology are briefly introduced, and the key technologies of wireless sensor network development are summarized from the four aspects of energy efficiency, node localization, data fusion and network security. As a detection system of perceiving the physical world, WSN is also facing challenges while developing rapidly.
Vasilyev, Vladimir, Shamsutdinov, Rinat.  2020.  Security Analysis of Wireless Sensor Networks Using SIEM and Multi-Agent Approach. 2020 Global Smart Industry Conference (GloSIC). :291–296.
The paper addresses the issue of providing information security to wireless sensor networks using Security Information and Event Management (SIEM) methodology along with multi-agent approach. The concept of wireless sensor networks and providing their information security, including construction of SIEM system architecture, SIEM analysis methodologies and its main features, are considered. The proposed approach is to integrate SIEM system methodology with a multi-agent architecture which includes data collecting agents, coordinating agent (supervisor) and local Intrusion Detection Systems (IDSs) based on artificial immune system mechanisms. Each IDS is used as an agent that performs a primary analysis and sends information about suspicious activity to the server. The server performs correlation analysis, identifies the most significant incidents, and helps to prioritize the incident response. The presented results of computational experiments confirm the effectiveness of the proposed approach.
JOUINI, Oumeyma, SETHOM, Kaouthar.  2020.  Physical Layer Security Proposal for Wireless Body Area Networks. 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME). :1–5.
Over the last few decades, and thanks to the advancement of embedded systems and wireless technologies, the wireless sensors network (WSN) are increasingly used in many fields. Many researches are being done on the use of WSN in Wireless body Area Network (WBAN) systems to facilitate and improve the quality of care and remote patient monitoring.The broadcast nature of wireless communications makes it difficult to hide transmitted signals from unauthorized users. To this end, Physical layer security is emerging as a promising paradigm to protect wireless communications against eavesdropping attacks. The primary contribution of this paper is achieving a minimum secrecy outage probability by using the jamming technique which can be used by the legitimate communication partner to increase the noise level of the eavesdropper and ensure higher secure communication rate. We also evaluate the effect of additional jammers on the security of the WBAN system.
Zahid, Muhammad Noaman, Jiang, Jianliang, Lu, Heng, Rizvi, Saad, Eric, Deborah, Khan, Shahrukh, Zhang, Hengli.  2020.  Security Issues and Challenges in RFID, Wireless Sensor Network and Optical Communication Networks and Solutions. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). :592–599.
Nowadays, Security is the biggest challenge in communication networks. Well defined security protocols not only solve the privacy and security issues but also help to reduce the implementation cost and simplify network's operation. Network society demands more reliable and secure network services as well as infrastructure. In communication networks, data theft, hacking, fraud, cyber warfare are serious security threats. Security as defined by experts is confirming protected communication amongst communication/computing systems and consumer applications in private and public networks, it is important for promising privacy, confidentiality, and protection of information. This paper highlights the security related issues and challenges in communication networks. We also present the holistic view for the underlaying physical layer including physical infrastructure attacks, jamming, interception, and eavesdropping. This research focused on improving the security measures and protocols in different communication networks.
2021-03-01
Saputra, R., Andika, J., Alaydrus, M..  2020.  Detection of Blackhole Attack in Wireless Sensor Network Using Enhanced Check Agent. 2020 Fifth International Conference on Informatics and Computing (ICIC). :1–4.

Wireless Sensor Network (WSN) is a heterogeneous type of network consisting of scattered sensor nodes and working together for data collection, processing, and transmission functions[1], [2]. Because WSN is widely used in vital matters, aspects of its security must also be considered. There are many types of attacks that might be carried out to disrupt WSN networks. The methods of attack that exist in WSN include jamming attack, tampering, Sybil attack, wormhole attack, hello flood attack, and, blackhole attack[3]. Blackhole attacks are one of the most dangerous attacks on WSN networks. Enhanced Check Agent method is designed to detect black hole attacks by sending a checking agent to record nodes that are considered black okay. The implementation will be tested right on a wireless sensor network using ZigBee technology. Network topology uses a mesh where each node can have more than one routing table[4]. The Enhanced Check Agent method can increase throughput to 100 percent.

2021-01-25
Kabir, N., Kamal, S..  2020.  Secure Mobile Sensor Data Transfer using Asymmetric Cryptography Algorithms. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
Mobile sensors are playing a vital role in various applications of a normal day life. Key size in securing data is an important issue to highlight in mobile sensor data transfer between a smart device and a data storage component. Such key size may affect memory storage and processing power of a mobile device. Therefore, we proposed a secure mobile sensor data transfer protocol called secure sensor protocol (SSP). SSP is based on Elliptic Curve Cryptography (ECC), which generates small size key in contrast to conventional asymmetric algorithms like RSA and Diffie Hellman. SSP receive values from light sensor and magnetic flux meter of a smart device. SSP encrypts mobile sensor data using ECC and afterwards it stores cipher information in MySQL database to receive remote data access. We compared the performance of the ECC with other existing asymmetric cryptography algorithms in terms of secure mobile sensor data transfer based on data encryption and decryption time, key size and encoded data size. In-addition, SSP shows better results than other cryptography algorithms in terms of secure mobile sensor data transfer.
2020-02-17
Belej, Olexander, Nestor, Natalia, Polotai, Orest, Sadeckii, Jan.  2019.  Features of Application of Data Transmission Protocols in Wireless Networks of Sensors. 2019 3rd International Conference on Advanced Information and Communications Technologies (AICT). :317–322.
This article discusses the vulnerabilities and complexity of designing secure IoT-solutions, and then presents proven approaches to protecting devices and gateways. Specifically, security mechanisms such as device authentication (including certificate-based authentication), device authentication, and application a verification of identification are described. The authors consider a protocol of message queue telemetry transport for speech and sensor networks on the Internet, its features, application variants, and characteristic procedures. The principle of "publishersubscriber" is considered. An analysis of information elements and messages is carried out. The urgency of the theme is due to the rapid development of "publisher-subscriber" architecture, for which the protocol is most characteristic.
Biswal, Satya Ranjan, Swain, Santosh Kumar.  2019.  Model for Study of Malware Propagation Dynamics in Wireless Sensor Network. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :647–653.
Wireless Sensor Network (WSN) faces critical security challenges due to malware(worm, virus, malicious code etc.) attack. When a single node gets compromised by malware then start to spread in entire sensor network through neighboring sensor nodes. To understand the dynamics of malware propagation in WSN proposed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model. This model used the concept of epidemiology. The model focused on early detection of malicious signals presence in the network and accordingly application of security mechanism for its removal. The early detection method helps in controlling of malware spread and reduce battery consumption of sensor nodes. In this paper study the dynamics of malware propagation and stability analysis of the system. In epidemiology basic reproduction number is a crucial parameter which is used for the determination of malware status in the system. The expression of basic reproduction number has been obtained. Analyze the propagation dynamics and compared with previous model. The proposed model provides improved security mechanism in comparison to previous one. The extensive simulation results conform the analytical investigation and accuracy of proposed model.
Alsumayt, Albandari, Albawardy, Norah, Aldossary, Wejdan, Alghamdi, Ebtehal, Aljammaz, Aljawhra.  2019.  Improve the security over the wireless sensor networks in medical sector. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–4.
Nowadays with the huge technological development, the reliance on technology has become enormous. Wireless Sensor Networks (WSN) is an example of using the Internet and communication between the patient and the hospital. Easy use of such networks helps to increase the quality of communication between patient and hospital. With the development of technology increased risk in use. Any change in this data between the patient and the hospital may cause false data that may harm the patient. In this paper, a secure protocol is designed to ensure the confidentiality, integrity, and availability of data transfer between the hospital and the patient, depending on the AES and RC4 algorithms.
Marchang, Jims, Ibbotson, Gregg, Wheway, Paul.  2019.  Will Blockchain Technology Become a Reality in Sensor Networks? 2019 Wireless Days (WD). :1–4.
The need for sensors to deliver, communicate, collect, alert, and share information in various applications has made wireless sensor networks very popular. However, due to its limited resources in terms of computation power, battery life and memory storage of the sensor nodes, it is challenging to add security features to provide the confidentiality, integrity, and availability. Blockchain technology ensures security and avoids the need of any trusted third party. However, applying Blockchain in a resource-constrained wireless sensor network is a challenging task because Blockchain is power, computation, and memory hungry in nature and demands heavy bandwidth due to control overheads. In this paper, a new routing and a private communication Blockchain framework is designed and tested with Constant Bit rate (CBR). The proposed Load Balancing Multi-Hop (LBMH) routing shares and enhances the battery life of the Cluster Heads and reduce control overhead during Block updates, but due to limited storage and energy of the sensor nodes, Blockchain in sensor networks may never become a reality unless computation, storage and battery life are readily available at low cost.