Visible to the public Biblio

Filters: Keyword is tempest  [Clear All Filters]
2020-12-14
Efendioglu, H. S., Asik, U., Karadeniz, C..  2020.  Identification of Computer Displays Through Their Electromagnetic Emissions Using Support Vector Machines. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–5.
As a TEMPEST information security problem, electromagnetic emissions from the computer displays can be captured, and reconstructed using signal processing techniques. It is necessary to identify the display type to intercept the image of the display. To determine the display type not only significant for attackers but also for protectors to prevent display compromising emanations. This study relates to the identification of the display type using Support Vector Machines (SVM) from electromagnetic emissions emitted from computer displays. After measuring the emissions using receiver measurement system, the signals were processed and training/test data sets were formed and the classification performance of the displays was examined with the SVM. Moreover, solutions for a better classification under real conditions have been proposed. Thus, one of the important step of the display image capture can accomplished by automatically identification the display types. The performance of the proposed method was evaluated in terms of confusion matrix and accuracy, precision, F1-score, recall performance measures.
2020-01-21
Boitan, Alexandru, B\u atu\c sic\u a, R\u azvan, Halunga, Simona, Fratu, Octavian.  2019.  Electromagnetic Vulnerabilities of LCD Projectors. Proceedings of the 6th Conference on the Engineering of Computer Based Systems. :1–6.

This paper presents for the first time a study on the security of information processed by video projectors. Examples of video recovery from the electromagnetic radiation of these equipment will be illustrated both in laboratory and real-field environment. It presents the results of the time parameters evaluation for the analyzed video signal that confirm the video standards specifications. There will also be illustrated the results of a vulnerability analysis based on the colors used to display the images but also the remote video recovery capabilities.

2018-02-21
Du, Y., Zhang, H..  2017.  Estimating the eavesdropping distance for radiated emission and conducted emission from information technology equipment. 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). :1–7.

The display image on the visual display unit (VDU) can be retrieved from the radiated and conducted emission at some distance with no trace. In this paper, the maximum eavesdropping distance for the unintentional radiation and conduction electromagnetic (EM) signals which contain information has been estimated in theory by considering some realistic parameters. Firstly, the maximum eavesdropping distance for the unintentional EM radiation is estimated based on the reception capacity of a log-periodic antenna which connects to a receiver, the experiment data, the attenuation in free-space and the additional attenuation in the propagation path. And then, based on a multi-conductor transmission model and some experiment results, the maximum eavesdropping distance for the conducted emission is theoretically derived. The estimating results demonstrated that the ITE equipment may also exist threat of the information leakage even if it has met the current EMC requirements.

2017-09-05
Schulz, Matthias, Klapper, Patrick, Hollick, Matthias, Tews, Erik, Katzenbeisser, Stefan.  2016.  Trust The Wire, They Always Told Me!: On Practical Non-Destructive Wire-Tap Attacks Against Ethernet. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :43–48.

Ethernet technology dominates enterprise and home network installations and is present in datacenters as well as parts of the backbone of the Internet. Due to its wireline nature, Ethernet networks are often assumed to intrinsically protect the exchanged data against attacks carried out by eavesdroppers and malicious attackers that do not have physical access to network devices, patch panels and network outlets. In this work, we practically evaluate the possibility of wireless attacks against wired Ethernet installations with respect to resistance against eavesdropping by using off-the-shelf software-defined radio platforms. Our results clearly indicate that twisted-pair network cables radiate enough electromagnetic waves to reconstruct transmitted frames with negligible bit error rates, even when the cables are not damaged at all. Since this allows an attacker to stay undetected, it urges the need for link layer encryption or physical layer security to protect confidentiality.