Visible to the public Biblio

Filters: Keyword is modal analysis  [Clear All Filters]
2023-02-02
Xuan, Liang, Zhang, Chunfei, Tian, Siyuan, Guan, Tianmin, Lei, Lei.  2022.  Integrated Design and Verification of Locomotive Traction Gearbox Based on Finite Element Analysis. 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE). :174–183.
This paper use the method of finite element analysis, and comparing and analyzing the split box and the integrated box from two aspects of modal analysis and static analysis. It is concluded that the integrated box has the characteristics of excellent vibration characteristics and high strength tolerance; At the same time, according to the S-N curve of the material and the load spectrum of the box, the fatigue life of the integrated box is 26.24 years by using the fatigue analysis software Fe-safe, which meets the service life requirements; The reliability analysis module PDS is used to calculate the reliability of the box, and the reliability of the integrated box is 96.5999%, which meets the performance requirements.
2022-05-20
Chattopadhyay, Abhiroop, Valdes, Alfonso, Sauer, Peter W., Nuqui, Reynaldo.  2021.  A Localized Cyber Threat Mitigation Approach For Wide Area Control of FACTS. 2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :264–269.
We propose a localized oscillation amplitude monitoring (OAM) method for the mitigation of cyber threats directed at the wide area control (WAC) system used to coordinate control of Flexible AC Transmission Systems (FACTS) for power oscillation damping (POD) of active power flow on inter-area tie lines. The method involves monitoring the inter-area tie line active power oscillation amplitude over a sliding window. We use system instability - inferred from oscillation amplitudes growing instead of damping - as evidence of an indication of a malfunction in the WAC of FACTS, possibly indicative of a cyber attack. Monitoring the presence of such a growth allows us to determine whether any destabilizing behaviors appear after the WAC system engages to control the POD. If the WAC signal increases the oscillation amplitude over time, thereby diminishing the POD performance, the FACTS falls back to POD using local measurements. The proposed method does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the OAM method for mitigation.
Chattopadhyay, Abhiroop, Valdes, Alfonso, Sauer, Peter W., Nuqui, Reynaldo.  2021.  A Cyber Threat Mitigation Approach For Wide Area Control of SVCs using Stability Monitoring. 2021 IEEE Madrid PowerTech. :1–6.
We propose a stability monitoring approach for the mitigation of cyber threats directed at the wide area control (WAC) system used for coordinated control of Flexible AC Transmission Systems (FACTS) used for power oscillation damping (POD) of active power flow on inter-area tie lines. The approach involves monitoring the modes of the active power oscillation on an inter-area tie line using the Matrix Pencil (MP) method. We use the stability characteristics of the observed modes as a proxy for the presence of destabilizing cyber threats. We monitor the system modes to determine whether any destabilizing modes appear after the WAC system engages to control the POD. If the WAC signal exacerbates the POD performance, the FACTS falls back to POD using local measurements. The proposed approach does not require an expansive system-wide view of the network. We simulate replay, control integrity, and timing attacks for a test system and present results that demonstrate the performance of the SM approach for mitigation.
2022-02-10
Jha, Prabhat Kumar, Prajapat, Ganesh P., Bansal, S. K., Solanki, Urmila.  2020.  Mode Identification and Small Signal Stability Analysis of Variable Speed Wind Power Systems. 2020 International Conference on Power Electronics IoT Applications in Renewable Energy and its Control (PARC). :286–291.
The high penetration of wind power generation into the grid evokes all the concerns for the deep understanding of its behavior and impact on the existing power system. This paper investigates the optimal operation of the Doubly Fed Induction Generator (DFIG) for the maximum power point tracking in deep with modal analysis. The grid connected DFIG system has been examined in two cases viz. open-loop case and closed-loop case where closed-loop case consists the system with the Flux Magnitude Angle Control (FMAC) and Direct Torque Control (DTC) approach. Various modes of the oscillation and their damping factor has been found in both the cases for the examination of the internal behavior of the system. Further, the effectiveness of the all the employed controls along with MPPT when the system is subjected to a stepped wind speed disturbance and voltage-dip have been confirmed. It was found from the simulation and the modal analysis that the frequency of the various oscillating modes is lesser while the damping is improved in the case of DTC control.
2017-09-05
Wang, Wei, Yang, Lin, Zhang, Qian.  2016.  Touch-and-guard: Secure Pairing Through Hand Resonance. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :670–681.

Securely pairing wearables with another device is the key to many promising applications, such as mobile payment, sensitive data transfer and secure interactions with smart home devices. This paper presents Touch-And-Guard (TAG), a system that uses hand touch as an intuitive manner to establish a secure connection between a wristband wearable and the touched device. It generates secret bits from hand resonant properties, which are obtained using accelerometers and vibration motors. The extracted secret bits are used by both sides to authenticate each other and then communicate confidentially. The ubiquity of accelerometers and motors presents an immediate market for our system. We demonstrate the feasibility of our system using an experimental prototype and conduct experiments involving 12 participants with 1440 trials. The results indicate that we can generate secret bits at a rate of 7.84 bit/s, which is 58% faster than conventional text input PIN authentication. We also show that our system is resistant to acoustic eavesdroppers in proximity.