Biblio
The battlefield environment differs from the natural environment in terms of irregular communications and the possibility of destroying communication and medical units by enemy forces. Information that can be collected in a war environment by soldiers is important information and must reach top-level commanders in time for timely decisions making. Also, ambulance staff in the battlefield need to enter the data of injured soldiers after the first aid, so that the information is available for the field hospital staff to prepare the needs for incoming injured soldiers.In this research, we propose two transaction techniques to handle these issues and use different concurrency control protocols, depending on the nature of the transaction and not a one concurrency control protocol for all types of transactions. Message transaction technique is used to collect valuable data from the battlefield by soldiers and allows top-level commanders to view it according to their permissions by logging into the system, to help them make timely decisions. In addition, use the capabilities of DBMS tools to organize data and generate reports, as well as for future analysis. Medical service unit transactional workflow technique is used to provides medical information to the medical authorities about the injured soldiers and their status, which helps them to prepare the required needs before the wounded soldiers arrive at the hospitals. Both techniques handle the disconnection problem during transaction processing.In our approach, the transaction consists of four phases, reading, editing, validation, and writing phases, and its processing is based on the optimistic concurrency control protocol, and the rules of actionability that describe how a transaction behaves if a value-change is occurred on one or more of its attributes during its processing time by other transactions.
We have been investigating methods for establishing an effective, immediate defense mechanism against the DDoS attacks on Web applications via hacker botnets, in which this defense mechanism can be immediately active without preparation time, e.g. for training data, usually asked for in existing proposals. In this study, we propose a new mechanism, including new data structures and algorithms, that allow the detection and filtering of large amounts of attack packets (Web request) based on monitoring and capturing the suspect groups of source IPs that can be sending packets at similar patterns, i.e. with very high and similar frequencies. The proposed algorithm places great emphasis on reducing storage space and processing time so it is promising to be effective in real-time attack response.
Within few years, Cloud computing has emerged as the most promising IT business model. Thanks to its various technical and financial advantages, Cloud computing continues to convince every day new users coming from scientific and industrial sectors. To satisfy the various users' requirements, Cloud providers must maximize the performance of their IT resources to ensure the best service at the lowest cost. The performance optimization efforts in the Cloud can be achieved at different levels and aspects. In the present paper, we propose to introduce a fuzzy logic process in scheduling strategy for public Cloud in order to improve the response time, processing time and total cost. In fact, fuzzy logic has proven his ability to solve the problem of optimization in several fields such as data mining, image processing, networking and much more.