Visible to the public Biblio

Filters: Keyword is access control policies  [Clear All Filters]
2020-09-28
Guo, Hao, Li, Wanxin, Nejad, Mark, Shen, Chien-Chung.  2019.  Access Control for Electronic Health Records with Hybrid Blockchain-Edge Architecture. 2019 IEEE International Conference on Blockchain (Blockchain). :44–51.
The global Electronic Health Record (EHR) market is growing dramatically and expected to reach \$39.7 billions by 2022. To safe-guard security and privacy of EHR, access control is an essential mechanism for managing EHR data. This paper proposes a hybrid architecture to facilitate access control of EHR data by using both blockchain and edge node. Within the architecture, a blockchain-based controller manages identity and access control policies and serves as a tamper-proof log of access events. In addition, off-chain edge nodes store the EHR data and apply policies specified in Abbreviated Language For Authorization (ALFA) to enforce attribute-based access control on EHR data in collaboration with the blockchain-based access control logs. We evaluate the proposed hybrid architecture by utilizing Hyperledger Composer Fabric blockchain to measure the performance of executing smart contracts and ACL policies in terms of transaction processing time and response time against unauthorized data retrieval.
2017-09-26
Bertolissi, Clara, Talbot, Jean-Marc, Villevalois, Didier.  2016.  Analysis of Access Control Policy Updates Through Narrowing. Proceedings of the 18th International Symposium on Principles and Practice of Declarative Programming. :62–75.

Administration of access control policies is a difficult task, especially in large organizations. We consider the problem of detecting whether administrative actions can yield in policies where some security goals are compromised. In particular, we are interested in problems generated by modifications –- such as adding/deleting elements to/from the set of possible users or permissions –- of policies specified as term-rewrite systems. We propose to use rewriting techniques to compare the behaviors of the modified version and the original version of the policy. More precisely, we use narrowing to compute counter-examples to the equivalence of rewrite-based policies. We prove that our technique provides a sound and complete way to recursively enumerate the set of counter-examples, even when this set is not finite, or when a mistake of the administrator makes one or both systems non-terminating.