Biblio
In this paper, we study trust-related human factors in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We compare three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. In the manual LOA, the human operator chooses headings for a flocking swarm, issuing new headings as needed. In the fully autonomous LOA, the swarm is redirected automatically by changing headings using a search algorithm. In the mixed-initiative LOA, if performance declines, control is switched from human to swarm or swarm to human. The result of this work extends the current knowledge on human factors in swarm supervisory control. Specifically, the finding that the relationship between trust and performance improved for passively monitoring operators (i.e., improved situation awareness in higher LOAs) is particularly novel in its contradiction of earlier work. We also discover that operators switch the degree of autonomy when their trust in the swarm system is low. Last, our analysis shows that operator's preference for a lower LOA is confirmed for a new domain of swarm control.
This paper presents a simulator for swarm operations designed to verify algorithms for a swarm of autonomous underwater robots (AUVs), specifically for constructing an underwater communication network with AUVs carrying acoustic communication devices. This simulator consists of three nodes: a virtual vehicle node (VV), a virtual environment node (VE), and a visual showing node (VS). The modular design treats AUV models as a combination of virtual equipment. An expert acoustic communication simulator is embedded in this simulator, to simulate scenarios with dynamic acoustic communication nodes. The several simulations we have performed demonstrate that this simulator is easy to use and can be further improved.