Biblio
Software Defined Networking (SDN) stands to transmute our modern networks and data centers, opening them up into highly agile frameworks that can be reconfigured depending on the requirement. Denial of Service (DoS) attacks are considered as one of the most destructive attacks. This paper, is about DoS attack detection and mitigation using SDN. DoS attack can minimize the bandwidth utilization, leaving the network unavailable for legitimate traffic. To provide a solution to the problem, concept of performance aware Software Defined Networking is used which involves real time network monitoring using sFlow as a visibility protocol. So, OpenFlow along with sFlow is used as an application to fight DoS attacks. Our analysis and results demonstrate that using this technique, DoS attacks are successfully defended implying that SDN has promising potential to detect and mitigate DoS attacks.
As today's networks become larger and more complex, the Distributed Denial of Service (DDoS) flooding attack threats may not only come from the outside of networks but also from inside, such as cloud computing network where exists multiple tenants possibly containing malicious tenants. So, the need of source-based defense mechanism against such attacks is pressing. In this paper, we mainly focus on the source-based defense mechanism against Botnet-based DDoS flooding attack through combining the power of Software-Defined Networking (SDN) and sample flow (sFlow) technology. Firstly, we defined a metric to measure the essential features of this kind attack which means distribution and collaboration. Then we designed a simple detection algorithm based on statistical inference model and response scheme through the abilities of SDN. Finally, we developed an application to realize our idea and also tested its effect on emulation network with real network traffic. The result shows that our mechanism could effectively detect DDoS flooding attack originated in SDN environment and identify attack flows for avoiding the harm of attack spreading to target or outside. We advocate the advantages of SDN in the area of defending DDoS attacks, because it is difficult and laborious to organize selfish and undisciplined traditional distributed network to confront well collaborative DDoS flooding attacks.