Biblio
Information centric network (ICN) based Mobile Edge Computing (MEC) network has drawn growing attentions in recent years. The distributed network architecture brings new security problems, especially the identity security problem. Because of the cloud platform deployed on the edge of the MEC network, multiple channel attributes can be easily obtained and processed. Thus this paper proposes a multiple channel attributes based spoofing detection mechanism. To further reduce the complexity, we also propose an improved clustering algorithm. The simulation results indicate that the proposed spoofing detection method can provide near-optimal performance with extremely low complexity.
Acoustic speaker recognition systems are very vulnerable to spoofing attacks via replayed or synthesized utterances. One possible countermeasure is audio-visual speaker recognition. Nevertheless, the addition of the visual stream alone does not prevent spoofing attacks completely and only provides further information to assess the authenticity of the utterance. Many systems consider audio and video modalities independently and can easily be spoofed by imitating only a single modality or by a bimodal replay attack with a victim's photograph or video. Therefore, we propose the simultaneous verification of the data synchronicity and the transcription in a challenge-response setup. We use coupled hidden Markov models (CHMMs) for a text-dependent spoofing detection and introduce new features that provide information about the transcriptions of the utterance and the synchronicity of both streams. We evaluate the features for various spoofing scenarios and show that the combination of the features leads to a more robust recognition, also in comparison to the baseline method. Additionally, by evaluating the data on unseen speakers, we show the spoofing detection to be applicable in speaker-independent use-cases.
As DNS packet are mostly UDP-based, make it as a perfect tool for hackers to launch a well-known type of distributed denial of service (DDoS). The purpose of this attack is to saturate the DNS server availability and resources. This type of attack usually utilizes a large number of botnet and perform spoofing on the IP address of the targeted victim. We take a different approach for IP spoofing detection and mitigation strategies to protect the DNS server by utilizing Software Defined Networking (SDN). In this paper, we present CAuth, a novel mechanism that autonomously block the spoofing query packet while authenticate the legitimate query. By manipulating Openflow control message, we design a collaborative approach between client and server network. Whenever a server controller receives query packet, it will send an authentication packet back to the client network and later the client controller also replies via authentication packet back to the server controller. The server controller will only forward the query to the DNS server if it receives the replied authentication packet from the client. From the evaluation, CAuth instantly manage to block spoofing query packet while authenticate the legitimate query as soon as the mechanism started. Most notably, our mechanism designed with no changes in existing DNS application and Openflow protocol.