Biblio
As an information hinge of various trades and professions in the era of big data, cloud data center bears the responsibility to provide uninterrupted service. To cope with the impact of failure and interruption during the operation on the Quality of Service (QoS), it is important to guarantee the resilience of cloud data center. Thus, different resilience actions are conducted in its life circle, that is, resilience strategy. In order to measure the effect of resilience strategy on the system resilience, this paper propose a new approach to model and evaluate the resilience strategy for cloud data center focusing on its core part of service providing-IT architecture. A comprehensive resilience metric based on resilience loss is put forward considering the characteristic of cloud data center. Furthermore, mapping model between system resilience and resilience strategy is built up. Then, based on a hierarchical colored generalized stochastic petri net (HCGSPN) model depicting the procedure of the system processing the service requests, simulation is conducted to evaluate the resilience strategy through the metric calculation. With a case study of a company's cloud data center, the applicability and correctness of the approach is demonstrated.
Blockchain has been applied to study data privacy and network security recently. In this paper, we propose a punishment scheme based on the action record on the blockchain to suppress the attack motivation of the edge servers and the mobile devices in the edge network. The interactions between a mobile device and an edge server are formulated as a blockchain security game, in which the mobile device sends a request to the server to obtain real-time service or launches attacks against the server for illegal security gains, and the server chooses to perform the request from the device or attack it. The Nash equilibria (NEs) of the game are derived and the conditions that each NE exists are provided to disclose how the punishment scheme impacts the adversary behaviors of the mobile device and the edge server.
Despite widespread use of commercial anti-virus products, the number of malicious files detected on home and corporate computers continues to increase at a significant rate. Recently, anti-virus companies have started investing in machine learning solutions to augment signatures manually designed by analysts. A malicious file's determination is often represented as a hierarchical structure consisting of a type (e.g. Worm, Backdoor), a platform (e.g. Win32, Win64), a family (e.g. Rbot, Rugrat) and a family variant (e.g. A, B). While there has been substantial research in automated malware classification, the aforementioned hierarchical structure, which can provide additional information to the classification models, has been ignored. In this paper, we propose the novel idea and study the performance of employing hierarchical learning algorithms for automated classification of malicious files. To the best of our knowledge, this is the first research effort which incorporates the hierarchical structure of the malware label in its automated classification and in the security domain, in general. It is important to note that our method does not require any additional effort by analysts because they typically assign these hierarchical labels today. Our empirical results on a real world, industrial-scale malware dataset of 3.6 million files demonstrate that incorporation of the label hierarchy achieves a significant reduction of 33.1% in the binary error rate as compared to a non-hierarchical classifier which is traditionally used in such problems.
Cloud storage is vulnerable to advanced persistent threats (APTs), in which an attacker launches stealthy, continuous, well-funded and targeted attacks on storage devices. In this paper, cumulative prospect theory (CPT) is applied to study the interactions between a defender of cloud storage and an APT attacker when each of them makes subjective decisions to choose the scan interval and attack interval, respectively. Both the probability weighting effect and the framing effect are applied to model the deviation of subjective decisions of end-users from the objective decisions governed by expected utility theory, under uncertain attack durations. Cumulative decision weights are used to describe the probability weighting effect and the value distortion functions are used to represent the framing effect of subjective APT attackers and defenders in the CPT-based APT defense game, rather than discrete decision weights, as in earlier prospect theoretic study of APT defense. The Nash equilibria of the CPT-based APT defense game are derived, showing that a subjective attacker becomes risk-seeking if the frame of reference for evaluating the utility is large, and becomes risk-averse if the frame of reference for evaluating the utility is small.