Biblio
Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterises the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is applied to generate pseudo-random keys that produce more complexity for the proposed cipher algorithm. The goal of the proposed algorithm is to present a hybrid algorithm by enhancing the complexity of the current PRESENT algorithm while keeping the performance of computational operations as minimal. The proposed algorithm proved working efficiently with fast executed time, and the analysed result of the generated sequence keys passed the randomness of the NIST suite.
The paper deals with the implementation aspects of the bilinear pairing operation over an elliptic curve on constrained devices, such as smart cards, embedded devices, smart meters and similar devices. Although cryptographic constructions, such as group signatures, anonymous credentials or identity-based encryption schemes, often rely on the pairing operation, the implementation of such schemes into practical applications is not straightforward, in fact, it may become very difficult. In this paper, we show that the implementation is difficult not only due to the high computational complexity, but also due to the lack of cryptographic libraries and programming interfaces. In particular, we show how difficult it is to implement pairing-based schemes on constrained devices and show the performance of various libraries on different platforms. Furthermore, we show the performance estimates of fundamental cryptographic constructions, the group signatures. The purpose of this paper is to reduce the gap between the cryptographic designers and developers and give performance results that can be used for the estimation of the implementability and performance of novel, upcoming schemes.
PUFs are an emerging security primitive that offers a lightweight security alternative to highly constrained devices like RFIDs. PUFs used in authentication protocols however suffer from unreliable outputs. This hinders their scaling, which is necessary for increased security, and makes them also problematic to use with cryptographic functions. We introduce a new Dual Arbiter PUF design that reveals additional information concerning the stability of the outputs. We then employ a novel filtering scheme that discards unreliable outputs with a minimum number of evaluations, greatly reducing the BER of the PUF.
Named Data Networks provide a clean-slate redesign of the Future Internet for efficient content distribution. Because Internet of Things are expected to compose a significant part of Future Internet, most content will be managed by constrained devices. Such devices are often equipped with limited CPU, memory, bandwidth, and energy supply. However, the current Named Data Networks design neglects the specific requirements of Internet of Things scenarios and many data structures need to be further optimized. The purpose of this research is to provide an efficient strategy to route in Named Data Networks by constructing a Forwarding Information Base using Iterated Bloom Filters defined as I(FIB)F. We propose the use of content names based on iterative hashes. This strategy leads to reduce the overhead of packets. Moreover, the memory and the complexity required in the forwarding strategy are lower than in current solutions. We compare our proposal with solutions based on hierarchical names and Standard Bloom Filters. We show how to further optimize I(FIB)F by exploiting the structure information contained in hierarchical content names. Finally, two strategies may be followed to reduce: (i) the overall memory for routing or (ii) the probability of false positives.
The Information-Centric Networking (ICN) paradigm is drastically different from traditional host-centric IP networking. As a consequence of the disparity between the two, the security models are also very different. The security model for IP is based on securing the end-to-end communication link between the communicating nodes whereas the ICN security model is based on securing data objects often termed as Object Security. Just like the traditional security model, Object security also poses a challenge of key management. This is especially concerning for ICN as data cached in its encrypted form should be usable by several different users. Attribute-Based Encryption (ABE) alleviates this problem by enabling data to be encrypted under a policy that suits several different types of users. Users with different sets of attributes can potentially decrypt the data hence eliminating the need to encrypt the data separately for each type of user. ABE is a more processing intensive task compared to traditional public key encryption methods hence posing a challenge for resource constrained environments with devices that have low memory and battery power. In this demo we show ABE encryption carried out on a resource constrained sensor platform. Encrypted data is transported over an ICN network and is decrypted only by clients that have the correct set of attributes.