Visible to the public Biblio

Filters: Keyword is trust inference  [Clear All Filters]
2020-10-12
Granatyr, Jones, Gomes, Heitor Murilo, Dias, João Miguel, Paiva, Ana Maria, Nunes, Maria Augusta Silveira Netto, Scalabrin, Edson Emílio, Spak, Fábio.  2019.  Inferring Trust Using Personality Aspects Extracted from Texts. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :3840–3846.
Trust mechanisms are considered the logical protection of software systems, preventing malicious people from taking advantage or cheating others. Although these concepts are widely used, most applications in this field do not consider affective aspects to aid in trust computation. Researchers of Psychology, Neurology, Anthropology, and Computer Science argue that affective aspects are essential to human's decision-making processes. So far, there is a lack of understanding about how these aspects impact user's trust, particularly when they are inserted in an evaluation system. In this paper, we propose a trust model that accounts for personality using three personality models: Big Five, Needs, and Values. We tested our approach by extracting personality aspects from texts provided by two online human-fed evaluation systems and correlating them to reputation values. The empirical experiments show statistically significant better results in comparison to non-personality-wise approaches.
2017-10-13
Gao, Peixin, Miao, Hui, Baras, John S., Golbeck, Jennifer.  2016.  STAR: Semiring Trust Inference for Trust-Aware Social Recommenders. Proceedings of the 10th ACM Conference on Recommender Systems. :301–308.

Social recommendation takes advantage of the influence of social relationships in decision making and the ready availability of social data through social networking systems. Trust relationships in particular can be exploited in such systems for rating prediction and recommendation, which has been shown to have the potential for improving the quality of the recommender and alleviating the issue of data sparsity, cold start, and adversarial attacks. An appropriate trust inference mechanism is necessary in extending the knowledge base of trust opinions and tackling the issue of limited trust information due to connection sparsity of social networks. In this work, we offer a new solution to trust inference in social networks to provide a better knowledge base for trust-aware recommender systems. We propose using a semiring framework as a nonlinear way to combine trust evidences for inferring trust, where trust relationship is model as 2-D vector containing both trust and certainty information. The trust propagation and aggregation rules, as the building blocks of our trust inference scheme, are based upon the properties of trust relationships. In our approach, both trust and distrust (i.e., positive and negative trust) are considered, and opinion conflict resolution is supported. We evaluate the proposed approach on real-world datasets, and show that our trust inference framework has high accuracy, and is capable of handling trust relationship in large networks. The inferred trust relationships can enlarge the knowledge base for trust information and improve the quality of trust-aware recommendation.