Visible to the public Biblio

Filters: Keyword is activity recognition  [Clear All Filters]
2023-02-17
Yang, Jin, Liu, Yunqing.  2022.  Countermeasure Against Anti-Sandbox Technology Based on Activity Recognition. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :834–839.
In order to prevent malicious environment, more and more applications use anti-sandbox technology to detect the running environment. Malware often uses this technology against analysis, which brings great difficulties to the analysis of applications. Research on anti-sandbox countermeasure technology based on application virtualization can solve such problems, but there is no good solution for sensor simulation. In order to prevent detection, most detection systems can only use real device sensors, which brings great hidden dangers to users’ privacy. Aiming at this problem, this paper proposes and implements a sensor anti-sandbox countermeasure technology for Android system. This technology uses the CNN-LSTM model to identify the activity of the real machine sensor data, and according to the recognition results, the real machine sensor data is classified and stored, and then an automatic data simulation algorithm is designed according to the stored data, and finally the simulation data is sent back by using the Hook technology for the application under test. The experimental results show that the method can effectively simulate the data characteristics of the acceleration sensor and prevent the triggering of anti-sandbox behaviors.
2022-04-25
Sunil, Ajeet, Sheth, Manav Hiren, E, Shreyas, Mohana.  2021.  Usual and Unusual Human Activity Recognition in Video using Deep Learning and Artificial Intelligence for Security Applications. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1–6.
The main objective of Human Activity Recognition (HAR) is to detect various activities in video frames. Video surveillance is an import application for various security reasons, therefore it is essential to classify activities as usual and unusual. This paper implements the deep learning model that has the ability to classify and localize the activities detected using a Single Shot Detector (SSD) algorithm with a bounding box, which is explicitly trained to detect usual and unusual activities for security surveillance applications. Further this model can be deployed in public places to improve safety and security of individuals. The SSD model is designed and trained using transfer learning approach. Performance evaluation metrics are visualised using Tensor Board tool. This paper further discusses the challenges in real-time implementation.
2021-07-07
Kaur, Ketanpreet, Sharma, Vikrant, Sachdeva, Monika.  2020.  Framework for FOGIoT based Smart Video Surveillance System (SVSS). 2020 International Conference on Computational Performance Evaluation (ComPE). :797–799.
In this ever updating digitalized world, everything is connected with just few touches away. Our phone is connected with things around us, even we can see live video of our home, shop, institute or company on the phone. But we can't track suspicious activity 24*7 hence needed a smart system to track down any suspicious activity taking place, so it automatically notifies us before any robbery or dangerous activity takes place. We have proposed a framework to tackle down this security matter with the help of sensors enabled cameras(IoT) connected through a FOG layer hence called FOGIoT which consists of small servers configured with Human Activity Analysis Algorithm. Any suspicious activity analyzed will be reported to responsible personnel and the due action will be taken place.
2020-04-06
Ahmadi, S. Sareh, Rashad, Sherif, Elgazzar, Heba.  2019.  Machine Learning Models for Activity Recognition and Authentication of Smartphone Users. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0561–0567.
Technological advancements have made smartphones to provide wide range of applications that enable users to perform many of their tasks easily and conveniently, anytime and anywhere. For this reason, many users are tend to store their private data in their smart phones. Since conventional methods for security of smartphones, such as passwords, personal identification numbers, and pattern locks are prone to many attacks, this research paper proposes a novel method for authenticating smartphone users based on performing seven different daily physical activity as behavioral biometrics, using smartphone embedded sensor data. This authentication scheme builds a machine learning model which recognizes users by performing those daily activities. Experimental results demonstrate the effectiveness of the proposed framework.
2019-03-15
Jourdan, Théo, Boutet, Antoine, Frindel, Carole.  2018.  Toward Privacy in IoT Mobile Devices for Activity Recognition. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :155-165.
Recent advances in wireless sensors for personal healthcare allow to recognise human real-time activities with mobile devices. While the analysis of those datastream can have many benefits from a health point of view, it can also lead to privacy threats by exposing highly sensitive information. In this paper, we propose a privacy-preserving framework for activity recognition. This framework relies on a machine learning technique to efficiently recognise the user activity pattern, useful for personal healthcare monitoring, while limiting the risk of re-identification of users from biometric patterns that characterizes each individual. To achieve that, we first deeply analysed different features extraction schemes in both temporal and frequency domain. We show that features in temporal domain are useful to discriminate user activity while features in frequency domain lead to distinguish the user identity. On the basis of this observation, we second design a novel protection mechanism that processes the raw signal on the user's smartphone and transfers to the application server only the relevant features unlinked to the identity of users. In addition, a generalisation-based approach is also applied on features in frequency domain before to be transmitted to the server in order to limit the risk of re-identification. We extensively evaluate our framework with a reference dataset: results show an accurate activity recognition (87%) while limiting the re-identifation rate (33%). This represents a slightly decrease of utility (9%) against a large privacy improvement (53%) compared to state-of-the-art baselines.
2019-01-21
Yu, Z., Du, H., Xiao, D., Wang, Z., Han, Q., Guo, B..  2018.  Recognition of Human Computer Operations Based on Keystroke Sensing by Smartphone Microphone. IEEE Internet of Things Journal. 5:1156–1168.

Human computer operations such as writing documents and playing games have become popular in our daily lives. These activities (especially if identified in a non-intrusive manner) can be used to facilitate context-aware services. In this paper, we propose to recognize human computer operations through keystroke sensing with a smartphone. Specifically, we first utilize the microphone embedded in a smartphone to sense the input audio from a computer keyboard. We then identify keystrokes using fingerprint identification techniques. The determined keystrokes are then corrected with a word recognition procedure, which utilizes the relations of adjacent letters in a word. Finally, by fusing both semantic and acoustic features, a classification model is constructed to recognize four typical human computer operations: 1) chatting; 2) coding; 3) writing documents; and 4) playing games. We recruited 15 volunteers to complete these operations, and evaluated the proposed approach from multiple aspects in realistic environments. Experimental results validated the effectiveness of our approach.

2018-11-19
Zhu, Yi, Liu, Sen, Newsam, Shawn.  2017.  Large-Scale Mapping of Human Activity Using Geo-Tagged Videos. Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. :68:1–68:4.

This paper is the first work to perform spatio-temporal mapping of human activity using the visual content of geo-tagged videos. We utilize a recent deep-learning based video analysis framework, termed hidden two-stream networks, to recognize a range of activities in YouTube videos. This framework is efficient and can run in real time or faster which is important for recognizing events as they occur in streaming video or for reducing latency in analyzing already captured video. This is, in turn, important for using video in smart-city applications. We perform a series of experiments to show our approach is able to map activities both spatially and temporally.

Choi, Jun-Ho, Choi, Manri, Choi, Min-Su, Lee, Jong-Seok.  2017.  Impact of Three-Dimensional Video Scalability on Multi-View Activity Recognition Using Deep Learning. Proceedings of the on Thematic Workshops of ACM Multimedia 2017. :135–143.

Human activity recognition is one of the important research topics in computer vision and video understanding. It is often assumed that high quality video sequences are available for recognition. However, relaxing such a requirement and implementing robust recognition using videos having reduced data rates can achieve efficiency in storing and transmitting video data. Three-dimensional video scalability, which refers to the possibility of reducing spatial, temporal, and quality resolutions of videos, is an effective way for flexible representation and management of video data. In this paper, we investigate the impact of the video scalability on multi-view activity recognition. We employ both a spatiotemporal feature extraction-based method and a deep learning-based method using convolutional and recurrent neural networks. The recognition performance of the two methods is examined, along with in-depth analysis regarding how their performance vary with respect to various scalability combinations. In particular, we demonstrate that the deep learning-based method can achieve significantly improved robustness in comparison to the feature-based method. Furthermore, we investigate optimal scalability combinations with respect to bitrate in order to provide useful guidelines for an optimal operation policy in resource-constrained activity recognition systems.

2018-04-04
Babiker, M., Khalifa, O. O., Htike, K. K., Hassan, A., Zaharadeen, M..  2017.  Automated daily human activity recognition for video surveillance using neural network. 2017 IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA). :1–5.

Surveillance video systems are gaining increasing attention in the field of computer vision due to its demands of users for the seek of security. It is promising to observe the human movement and predict such kind of sense of movements. The need arises to develop a surveillance system that capable to overcome the shortcoming of depending on the human resource to stay monitoring, observing the normal and suspect event all the time without any absent mind and to facilitate the control of huge surveillance system network. In this paper, an intelligent human activity system recognition is developed. Series of digital image processing techniques were used in each stage of the proposed system, such as background subtraction, binarization, and morphological operation. A robust neural network was built based on the human activities features database, which was extracted from the frame sequences. Multi-layer feed forward perceptron network used to classify the activities model in the dataset. The classification results show a high performance in all of the stages of training, testing and validation. Finally, these results lead to achieving a promising performance in the activity recognition rate.

2017-12-12
Bhattacharjee, S. Das, Yuan, J., Jiaqi, Z., Tan, Y. P..  2017.  Context-aware graph-based analysis for detecting anomalous activities. 2017 IEEE International Conference on Multimedia and Expo (ICME). :1021–1026.

This paper proposes a context-aware, graph-based approach for identifying anomalous user activities via user profile analysis, which obtains a group of users maximally similar among themselves as well as to the query during test time. The main challenges for the anomaly detection task are: (1) rare occurrences of anomalies making it difficult for exhaustive identification with reasonable false-alarm rate, and (2) continuously evolving new context-dependent anomaly types making it difficult to synthesize the activities apriori. Our proposed query-adaptive graph-based optimization approach, solvable using maximum flow algorithm, is designed to fully utilize both mutual similarities among the user models and their respective similarities with the query to shortlist the user profiles for a more reliable aggregated detection. Each user activity is represented using inputs from several multi-modal resources, which helps to localize anomalies from time-dependent data efficiently. Experiments on public datasets of insider threats and gesture recognition show impressive results.

2017-10-18
Ahmad, Abdul Mutaal, Lukowicz, Paul, Cheng, Jingyuan.  2016.  FPGA Based Hardware Acceleration of Sensor Matrix. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. :793–802.
This paper describes the hardware acceleration of various feature calculation functions used in activity recognition. In this work we have used a large scale sensing matrix which recognizes and counts gym exercises. Human activity is played on pressure matrix and the sensor data is sent to computer using a wired protocol for further processing. The recorded data from matrix is huge making it impractical to process on a smart phone. We propose a FPGA (Field Programmable Gate Array) based processing methodology which not only accelerates sensing data processing but also reduces the size of 2D sensor data matrix to 10 features. The resultant feature set can be transferred using wireless medium to a smart phone or other processing unit where the classification can be done. Our system takes a matrix of arbitrary size and output a 'features' set for each matrix frame. We used HLS (High Level Synthesis), an approach to write algorithm for FPGA using SystemC/C/C++ instead of traditional VHDL/Verilog. Results show promising improvement in processing time as compared to Matlab. Since the size of data is reduced, wireless medium can be use to transmit data. Additionally, the development time for FPGA designs is greatly reduced due to the usage of an abstracted high level synthesis approach. This system is currently developed for pressure sensing system but this strategy can be applied to other sensing application like temperature sensor grid.