Biblio
Efficient monitoring of high speed computer networks operating with a 100 Gigabit per second (Gbps) data throughput requires a suitable hardware acceleration of its key components. We present a platform capable of automated designing of hash functions suitable for network flow hashing. The platform employs a multi-objective linear genetic programming developed for the hash function design. We evolved high-quality hash functions and implemented them in a field programmable gate array (FPGA). Several evolved hash functions were combined together in order to form a new reconfigurable hash function. The proposed reconfigurable design significantly reduces the area on a chip while the maximum operation frequency remains very close to the fastest hash functions. Properties of evolved hash functions were compared with the state-of-the-art hash functions in terms of the quality of hashing, area and operation frequency in the FPGA.
The protection of confidential information has become very important with the increase of data sharing and storage on public domains. Data confidentiality is accomplished through the use of ciphers that encrypt and decrypt the data to impede unauthorized access. Emerging heterogeneous platforms provide an ideal environment to use hardware acceleration to improve application performance. In this paper, we explore the performance benefits of an AES hardware accelerator versus the software implementation for multiple cipher modes on the Zynq 7000 All-Programmable System-on-a-Chip (SoC). The accelerator is implemented on the FPGA fabric of the SoC and utilizes DMA for interfacing to the CPU. File encryption and decryption of varying file sizes are used as the workload, with execution time and throughput as the metrics for comparing the performance of the hardware and software implementations. The performance evaluations show that the accelerated AES operations achieve a speedup of 7 times relative to its software implementation and throughput upwards of 350 MB/s for the counter cipher mode, and modest improvements for other cipher modes.