Caporusso, N..
2021.
An Improved PIN Input Method for the Visually Impaired. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). :476–481.
Despite the recent introduction of biometric identification technology, Personal Identification Numbers (PIN) are the standard for granting access to restricted areas and for authorizing operations on most systems, including mobile phones, payment devices, smart locks. Unfortunately, PINs have several inherent vulnerabilities and expose users to different types of social engineering attacks. Specifically, the risk of shoulder surfing in PIN-based authentication is especially high for individuals who are blind. In this paper, we introduce a new method for improving the trade-off between security and accessibility in PIN-based authentication systems. Our proposed solution aims at minimizing the threats posed by malicious agents while maintaining a low level of complexity for the user. We present the method and discuss the results of an evaluation study that demonstrates the advantages of our solution compared to state-of-the-art systems.
Caramancion, Kevin Matthe.
2022.
Same Form, Different Payloads: A Comparative Vector Assessment of DDoS and Disinformation Attacks. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
This paper offers a comparative vector assessment of DDoS and disinformation attacks. The assessed dimensions are as follows: (1) the threat agent, (2) attack vector, (3) target, (4) impact, and (5) defense. The results revealed that disinformation attacks, anchoring on astroturfs, resemble DDoS’s zombie computers in their method of amplification. Although DDoS affects several layers of the OSI model, disinformation attacks exclusively affect the application layer. Furthermore, even though their payloads and objectives are different, their vector paths and network designs are very similar. This paper, as its conclusion, strongly recommends the classification of disinformation as an actual cybersecurity threat to eliminate the inconsistencies in policies in social networking platforms. The intended target audiences of this paper are IT and cybersecurity experts, computer and information scientists, policymakers, legal and judicial scholars, and other professionals seeking references on this matter.
Caramancion, Kevin Matthe.
2022.
An Exploration of Mis/Disinformation in Audio Format Disseminated in Podcasts: Case Study of Spotify. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
This paper examines audio-based social networking platforms and how their environments can affect the persistence of fake news and mis/disinformation in the whole information ecosystem. This is performed through an exploration of their features and how they compare to that of general-purpose multimodal platforms. A case study on Spotify and its recent issue on free speech and misinformation is the application area of this paper. As a supplementary, a demographic analysis of the current statistics of podcast streamers is outlined to give an overview of the target audience of possible deception attacks in the future. As for the conclusion, this paper confers a recommendation to policymakers and experts in preparing for future mis-affordance of the features in social environments that may unintentionally give the agents of mis/disinformation prowess to create and sow discord and deception.
Carneiro, Lucas R., Delgado, Carla A.D.M., da Silva, João C.P..
2019.
Social Analysis of Game Agents: How Trust and Reputation can Improve Player Experience. 2019 8th Brazilian Conference on Intelligent Systems (BRACIS). :485–490.
Video games normally use Artificial Intelligence techniques to improve Non-Player Character (NPC) behavior, creating a more realistic experience for their players. However, rational behavior in general does not consider social interactions between player and bots. Because of that, a new framework for NPCs was proposed, which uses a social bias to mix the default strategy of finding the best possible plays to win with a analysis to decide if other players should be categorized as allies or foes. Trust and reputation models were used together to implement this demeanor. In this paper we discuss an implementation of this framework inside the game Settlers of Catan. New NPC agents are created to this implementation. We also analyze the results obtained from simulations among agents and players to conclude how the use of trust and reputation in NPCs can create a better gaming experience.
Cha, Shi-Cho, Li, Zhuo-Xun, Fan, Chuan-Yen, Tsai, Mila, Li, Je-Yu, Huang, Tzu-Chia.
2019.
On Design and Implementation a Federated Chat Service Framework in Social Network Applications. 2019 IEEE International Conference on Agents (ICA). :33–36.
As many organizations deploy their chatbots on social network applications to interact with their customers, a person may switch among different chatbots for different services. To reduce the switching cost, this study proposed the Federated Chat Service Framework. The framework maintains user profiles and historical behaviors. Instead of deploying chatbots, organizations follow the rules of the framework to provide chat services. Therefore, the framework can organize service requests with context information and responses to emulate the conversations between users and chat services. Consequently, the study can hopefully contribute to reducing the cost for a user to communicate with different chatbots.
Chaminade, Thierry.
2017.
How Do Artificial Agents Think? Proceedings of the 1st ACM SIGCHI International Workshop on Investigating Social Interactions with Artificial Agents. :1–1.
Anthropomorphic artificial agents, computed characters or humanoid robots, can be sued to investigate human cognition. They are intrinsically ambivalent. They appear and act as humans, hence we should tend to consider them as human, yet we know they are machine designed by humans, and should not consider them as humans. Reviewing a number of behavioral and neurophysiological studies provides insights into social mechanisms that are primarily influenced by the appearance of the agent, and in particular its resemblance to humans, and other mechanisms that are influenced by the knowledge we have about the artificial nature of the agent. A significant finding is that, as expected, humans don't naturally adopt an intentional stance when interacting with artificial agents.
Chen, Siyuan, Liu, Wei, Liu, Jiamou, Soo, Khí-Uí, Chen, Wu.
2019.
Maximizing Social Welfare in Fractional Hedonic Games using Shapley Value. 2019 IEEE International Conference on Agents (ICA). :21–26.
Fractional hedonic games (FHGs) are extensively studied in game theory and explain the formation of coalitions among individuals in a group. This paper investigates the coalition generation problem, namely, finding a coalition structure whose social welfare, i.e., the sum of the players' payoffs, is maximized. We focus on agent-based methods which set the decision rules for each player in the game. Through repeated interactions the players arrive at a coalition structure. In particular, we propose CFSV, namely, coalition formation with Shapley value-based welfare distribution scheme. To evaluate CFSV, we theoretically demonstrate that this algorithm achieves optimal coalition structure over certain standard graph classes and empirically compare the algorithm against other existing benchmarks on real-world and synthetic graphs. The results show that CFSV is able to achieve superior performance.
Cornelissen, Laurenz A., Barnett, Richard J, Kepa, Morakane A. M., Loebenberg-Novitzkas, Daniel, Jordaan, Jacques.
2018.
Deploying South African Social Honeypots on Twitter. Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. :179-187.
Inspired by the simple, yet effective, method of tweeting gibberish to attract automated social agents (bots), we attempt to create localised honeypots in the South African political context. We produce a series of defined techniques and combine them to generate interactions from users on Twitter. The paper offers two key contributions. Conceptually, an argument is made that honeypots should not be confused for bot detection methods, but are rather methods to capture low-quality users. Secondly, we successfully generate a list of 288 local low quality users active in the political context.
Cornelissen, Laurenz A., Barnett, Richard J, Schoonwinkel, Petrus, Eichstadt, Brent D., Magodla, Hluma B..
2018.
A Network Topology Approach to Bot Classification. Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. :79-88.
Automated social agents, or bots are increasingly becoming a problem on social media platforms. There is a growing body of literature and multiple tools to aid in the detection of such agents on online social networking platforms. We propose that the social network topology of a user would be sufficient to determine whether the user is a automated agent or a human. To test this, we use a publicly available dataset containing users on Twitter labelled as either automated social agent or human. Using an unsupervised machine learning approach, we obtain a detection accuracy rate of 70%.
Curry, Amanda Cercas, Hastie, Helen, Rieser, Verena.
2017.
A Review of Evaluation Techniques for Social Dialogue Systems. Proceedings of the 1st ACM SIGCHI International Workshop on Investigating Social Interactions with Artificial Agents. :25–26.
In contrast with goal-oriented dialogue, social dialogue has no clear measure of task success. Consequently, evaluation of these systems is notoriously hard. In this paper, we review current evaluation methods, focusing on automatic metrics. We conclude that turn-based metrics often ignore the context and do not account for the fact that several replies are valid, while end-of-dialogue rewards are mainly hand-crafted. Both lack grounding in human perceptions.