Biblio
According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.
The paper considers the issue of assessing threats to information security in industrial automation and telecommunication systems in order to improve the efficiency of their security systems. A method for determining a quantitative indicator of threats is proposed, taking into account the probabilistic nature of the process of implementing negative impacts on objects of both industrial and telecommunications systems. The factors that contribute and (or) initiate them are also determined, the dependences of the formal definition of the quantitative indicator of threats are obtained. Methods for a quantitative threat assessment as well as the degree of this threat are presented in the form of a mathematical model in order to substantiate and describe the method for determining a threat to industrial automation systems. Recommendations necessary for obtaining expert assessments of negative impacts on the informatisation objects and information security systems counteracting are formulated to facilitate making decisions on the protection of industrial and telecommunication systems.
Cybersecurity has become an emerging challenge for business information management and critical infrastructure protection in recent years. Artificial Intelligence (AI) has been widely used in different fields, but it is still relatively new in the area of Cyber-Physical Systems (CPS) security. In this paper, we provide an approach based on Machine Learning (ML) to intelligent threat recognition to enable run-time risk assessment for superior situation awareness in CPS security monitoring. With the aim of classifying malicious activity, several machine learning methods, such as k-nearest neighbours (kNN), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF), have been applied and compared using two different publicly available real-world testbeds. The results show that RF allowed for the best classification performance. When used in reference industrial applications, the approach allows security control room operators to get notified of threats only when classification confidence will be above a threshold, hence reducing the stress of security managers and effectively supporting their decisions.
Physical protection system (PPS) is developed to protect the assets or facilities against threats. A systematic analysis of the capabilities and intentions of potential threat capabilities is needed resulting in a so-called Design Basis Threat (DBT) document. A proper development of DBT is important to identify the system requirements that are required for adequately protecting a system and to optimize the resources needed for the PPS. In this paper we propose a model-based systems engineering approach for developing a DBT based on feature models. Based on a domain analysis process, we provide a metamodel that defines the key concepts needed for developing DBT. Subsequently, a reusable family feature model for PPS is provided that includes the common and variant properties of the PPS concepts detection, deterrence and response. The configuration processes are modeled to select and analyze the required features for implementing the threat scenarios. Finally, we discuss the integration of the DBT with the PPS design process.