Biblio
Companies want to offer chat bots to their customers and employees which can answer questions, enable self-service, and showcase their products and services. Implementing and maintaining chat bots by hand costs time and money. Companies typically have web APIs for their services, which are often documented with an API specification. This paper presents a compiler that takes a web API specification written in Swagger and automatically generates a chat bot that helps the user make API calls. The generated bot is self-documenting, using descriptions from the API specification to answer help requests. Unfortunately, Swagger specifications are not always good enough to generate high-quality chat bots. This paper addresses this problem via a novel in-dialogue curation approach: the power user can improve the generated chat bot by interacting with it. The result is then saved back as an API specification. This paper reports on the design and implementation of the chat bot compiler, the in-dialogue curation, and working case studies.
Embedded software is found everywhere from our highly visible mobile devices to the confines of our car in the form of smart sensors. Embedded software companies are under huge pressure to produce safe applications that limit risks, and testing is absolutely critical to alleviate concerns regarding safety and user privacy. This requires using large test suites throughout the development process, increasing time-to-market and ultimately hindering competitivity. Speeding up test execution is, therefore, of paramount importance for embedded software developers. This is traditionally achieved by running, in parallel, multiple tests on large-scale clusters of computers. However, this approach is costly in terms of infrastructure maintenance and energy consumed, and is at times inconvenient as developers have to wait for their tests to be scheduled on a shared resource. We propose to look at exploiting GPUs (Graphics Processing Units) for running embedded software testing. GPUs are readily available in most computers and offer tremendous amounts of parallelism, making them an ideal target for embedded software testing. In this paper, we demonstrate, for the first time, how test executions of embedded C programs can be automatically performed on a GPU, without involving the end user. We take a compiler-assisted approach which automatically compiles the C program into GPU kernels for parallel execution of the input tests. Using this technique, we achieve an average speedup of 16Ã when compared to CPU execution of input tests across nine programs from an industry standard embedded benchmark suite.
This research investigates changes in the electromagnetic (EM) signatures of a cryptographic binary executable based on compile-time parameters to the GNU and clang compilers. The source code was compiled and executed on a Raspberry Pi 2, which utilizes the ARMv7 CPU. Various optimization flags are enabled at compile-time and the output of the binary executable's EM signatures are captured at run-time. It is demonstrated that GNU and clang compilers produced different EM signature on program execution. The results indicated while utilizing the O3 optimization flag, the EM signature of the program changes. Additionally, the g++ compiler demonstrated fewer instructions were required to run the executable; this related to fewer EM emissions leaked. The EM data from the various compilers under different optimization levels was used as input data for a correlation power analysis attack. The results indicated that partial AES-128 encryption keys was possible. In addition, the fewest subkeys recovered was when the clang compiler was used with level O2 optimization. Finally, the research was able to recover 15 of 16 AES-128 cryptographic algorithm's subkeys, from the the Pi.