Biblio
Network security is a general idea to ensure information transmission over PC and portable systems. Elliptic curve cryptosystems are nowadays widely used in public communication channels for network security. Their security relies upon the complexity of clarifying the elliptic curve discrete alogarithm issue. But, there are several general attacks in them. Elliptic bend number juggling is actualized over complex fields to enhance the security of elliptic curve cryptosystems. This paper starts with the qualities of elliptic curve cryptosystems and their security administrations. At that point we talk about limited field number-crunching and its properties, prime field number-crunching, twofold field math and complex number-crunching, and elliptic bend number-crunching over prime field and parallel field. This paper proposes how to execute the unpredictable number of math under prime field and double field utilizing java BigInteger class. also, we actualize elliptic bend math and elliptic bend cryptosystems utilizing complex numbers over prime field and double field and talk about our trials that got from the usage.
We consider some approaches to the construction of lightweight block ciphers and introduce the definitions for "index of strong nonlinearity" and "index of perfection". For PRESENT, MIDORI, SKINNY, CLEFIA, LILLIPUT mixing and nonlinear properties were evaluated. We obtain the exact values of the exponents for mixing matrices of round functions and the upper bounds for indexes of perfection and strong nonlinearity. It was determined by the experiment that each coordinate function of output block is nonlinear during 500 rounds. We propose the algorithmic realization of 16×16 S-box based on the modified additive generator with lightweight cipher SPECK as a modification which does not demand memory for storage huge substitution tables. The best value of the differential characteristic of such S-box is 18/216, the minimal nonlinearity degree of coordinate functions is equal to 15 and the minimal linear characteristic is 788/215.
Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.
This paper investigates practical strategies for distributing payload across images with content-adaptive steganography and for pooling outputs of a single-image detector for steganalysis. Adopting a statistical model for the detector's output, the steganographer minimizes the power of the most powerful detector of an omniscient Warden, while the Warden, informed by the payload spreading strategy, detects with the likelihood ratio test in the form of a matched filter. Experimental results with state-of-the-art content-adaptive additive embedding schemes and rich models are included to show the relevance of the results.
Membership revocation is essential for cryptographic applications, from traditional PKIs to group signatures and anonymous credentials. Of the various solutions for the revocation problem that have been explored, dynamic accumulators are one of the most promising. We propose Braavos, a new, RSA-based, dynamic accumulator. It has optimal communication complexity and, when combined with efficient zero-knowledge proofs, provides an ideal solution for anonymous revocation. For the construction of Braavos we use a modular approach: we show how to build an accumulator with better functionality and security from accumulators with fewer features and weaker security guarantees. We then describe an anonymous revocation component (ARC) that can be instantiated using any dynamic accumulator. ARC can be added to any anonymous system, such as anonymous credentials or group signatures, in order to equip it with a revocation functionality. Finally, we implement ARC with Braavos and plug it into Idemix, the leading implementation of anonymous credentials. This work resolves, for the first time, the problem of practical revocation for anonymous credential systems.
The Internet of Things is a disruptive paradigm based on the cooperation of a plethora of heterogeneous smart things to collect, transmit, and analyze data from the ambient environment. To this end, many monitored variables are combined by a data analysis module in order to implement efficient context-aware decision mechanisms. To ensure resource efficiency, aggregation is a long established solution, however it is applicable only in the case of one sensed variable. We extend the use of aggregation to the complex context of IoT by proposing a novel approach for secure cooperation of smart things while granting confidentiality and integrity. Traditional solutions for data concealment in resource constrained devices rely on hop-by-hop or end-to-end encryption, which are shown to be inefficient in our context. We use a more sophisticated scheme relying on homomorphic encryption which is not compromise resilient. We combine fully additive encryption with fully additive secret sharing to fulfill the required properties. Thorough security analysis and performance evaluation show a viable tradeoff between security and efficiency for our scheme.
We propose a general approach to construct cryptographic significant Boolean functions of (r + 1)m variables based on the additive decomposition F2rm × F2m of the finite field F2(r+1)m, where r ≥ 1 is odd and m ≥ 3. A class of unbalanced functions is constructed first via this approach, which coincides with a variant of the unbalanced class of generalized Tu-Deng functions in the case r = 1. Functions belonging to this class have high algebraic degree, but their algebraic immunity does not exceed m, which is impossible to be optimal when r > 1. By modifying these unbalanced functions, we obtain a class of balanced functions which have optimal algebraic degree and high nonlinearity (shown by a lower bound we prove). These functions have optimal algebraic immunity provided a combinatorial conjecture on binary strings which generalizes the Tu-Deng conjecture is true. Computer investigations show that, at least for small values of number of variables, functions from this class also behave well against fast algebraic attacks.
We propose a general approach to construct cryptographic significant Boolean functions of (r + 1)m variables based on the additive decomposition F2rm × F2m of the finite field F2(r+1)m, where r ≥ 1 is odd and m ≥ 3. A class of unbalanced functions is constructed first via this approach, which coincides with a variant of the unbalanced class of generalized Tu-Deng functions in the case r = 1. Functions belonging to this class have high algebraic degree, but their algebraic immunity does not exceed m, which is impossible to be optimal when r > 1. By modifying these unbalanced functions, we obtain a class of balanced functions which have optimal algebraic degree and high nonlinearity (shown by a lower bound we prove). These functions have optimal algebraic immunity provided a combinatorial conjecture on binary strings which generalizes the Tu-Deng conjecture is true. Computer investigations show that, at least for small values of number of variables, functions from this class also behave well against fast algebraic attacks.