Visible to the public Biblio

Filters: Author is Chattopadhyay, S.  [Clear All Filters]
2021-03-09
Adhikari, M., Panda, P. K., Chattopadhyay, S., Majumdar, S..  2020.  A Novel Group-Based Authentication and Key Agreement Protocol for IoT Enabled LTE/LTE–A Network. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :168—172.

This paper deals with novel group-based Authentication and Key Agreement protocol for Internet of Things(IoT) enabled LTE/LTE-A network to overcome the problems of computational overhead, complexity and problem of heterogeneous devices, where other existing methods are lagging behind in attaining security requirements and computational overhead. In this work, two Groups are created among Machine Type Communication Devices (MTCDs) on the basis of device type to reduce complexity and problems of heterogeneous devices. This paper fulfills all the security requirements such as preservation, mutual authentication, confidentiality. Bio-metric authentication has been used to enhance security level of the network. The security and performance analysis have been verified through simulation results. Moreover, the performance of the proposed Novel Group-Based Authentication and key Agreement(AKA) Protocol is analyzed with other existing IoT enabled LTE/LTE-A protocol.

2020-11-09
Karmakar, R., Jana, S. S., Chattopadhyay, S..  2019.  A Cellular Automata Guided Obfuscation Strategy For Finite-State-Machine Synthesis. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
A popular countermeasure against IP piracy relies on obfuscating the Finite State Machine (FSM), which is assumed to be the heart of a digital system. In this paper, we propose to use a special class of non-group additive cellular automata (CA) called D1 * CA, and it's counterpart D1 * CAdual to obfuscate each state-transition of an FSM. The synthesized FSM exhibits correct state-transitions only for a correct key, which is a designer's secret. The proposed easily testable key-controlled FSM synthesis scheme can thwart reverse engineering attacks, thus offers IP protection.
2015-05-06
Kundu, S., Jha, A., Chattopadhyay, S., Sengupta, I., Kapur, R..  2014.  Framework for Multiple-Fault Diagnosis Based on Multiple Fault Simulation Using Particle Swarm Optimization. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on. 22:696-700.

This brief proposes a framework to analyze multiple faults based on multiple fault simulation in a particle swarm optimization environment. Experimentation shows that up to ten faults can be diagnosed in a reasonable time. However, the scheme does not put any restriction on the number of simultaneous faults.