Biblio
The amount of information that is shared regularly has increased as a direct result of the rapid development of network administrators, Web of Things-related devices, and online users. Cybercriminals constantly work to gain access to the data that is stored and transferred online in order to accomplish their objectives, whether those objectives are to sell the data on the dark web or to commit another type of crime. After conducting a thorough writing analysis of the causes and problems that arise with wireless networks’ security and privacy, it was discovered that there are a number of factors that can make the networks unpredictable, particularly those that revolve around cybercriminals’ evolving skills and the lack of significant bodies’ efforts to combat them. It was observed. Wireless networks have a built-in security flaw that renders them more defenceless against attack than their wired counterparts. Additionally, problems arise in networks with hub mobility and dynamic network geography. Additionally, inconsistent availability poses unanticipated problems, whether it is accomplished through mobility or by sporadic hub slumber. In addition, it is difficult, if not impossible, to implement recently developed security measures due to the limited resources of individual hubs. Large-scale problems that arise in relation to wireless networks and flexible processing are examined by the Wireless Correspondence Network Security and Privacy research project. A few aspects of security that are taken into consideration include confirmation, access control and approval, non-disavowal, privacy and secrecy, respectability, and inspection. Any good or service should be able to protect a client’s personal information. an approach that emphasises quality, implements strategy, and uses a poll as a research tool for IT and public sector employees. This strategy reflects a higher level of precision in IT faculties.
Deep web refers to sites that cannot be found by search engines and makes up the 96% of the digital world. The dark web is the part of the deep web that can only be accessed through specialised tools and anonymity networks. To avoid monitoring and control, communities that seek for anonymization are moving to the dark web. In this work, we scrape five dark web forums and construct five graphs to model user connections. These networks are then studied and compared using data mining techniques and social network analysis tools; for each community we identify the key actors, we study the social connections and interactions, we observe the small world effect, and we highlight the type of discussions among the users. Our results indicate that only a small subset of users are influential, while the rapid dissemination of information and resources between users may affect behaviours and formulate ideas for future members.
Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.
Internet technology has made surveillance widespread and access to resources at greater ease than ever before. This implied boon has countless advantages. It however makes protecting privacy more challenging for the greater masses, and for the few hacktivists, supplies anonymity. The ever-increasing frequency and scale of cyber-attacks has not only crippled private organizations but has also left Law Enforcement Agencies(LEA's) in a fix: as data depicts a surge in cases relating to cyber-bullying, ransomware attacks; and the force not having adequate manpower to tackle such cases on a more microscopic level. The need is for a tool, an automated assistant which will help the security officers cut down precious time needed in the very first phase of information gathering: reconnaissance. Confronting the surface web along with the deep and dark web is not only a tedious job but which requires documenting the digital footprint of the perpetrator and identifying any Indicators of Compromise(IOC's). TORSION which automates web reconnaissance using the Open Source Intelligence paradigm, extracts the metadata from popular indexed social sites and un-indexed dark web onion sites, provided it has some relating Intel on the target. TORSION's workflow allows account matching from various top indexed sites, generating a dossier on the target, and exporting the collected metadata to a PDF file which can later be referenced.
Currently, the Dark Web is one key platform for the online trading of illegal products and services. Analysing the .onion sites hosting marketplaces is of interest for law enforcement and security researchers. This paper presents a study on 123k listings obtained from 6 different Dark Web markets. While most of current works leverage existing datasets, these are outdated and might not contain new products, e.g., those related to the 2020 COVID pandemic. Thus, we build a custom focused crawler to collect the data. Being able to conduct analyses on current data is of considerable importance as these marketplaces continue to change and grow, both in terms of products offered and users. Also, there are several anti-crawling mechanisms being improved, making this task more difficult and, consequently, reducing the amount of data obtained in recent years on these marketplaces. We conduct a data analysis evaluating multiple characteristics regarding the products, sellers, and markets. These characteristics include, among others, the number of sales, existing categories in the markets, the origin of the products and the sellers. Our study sheds light on the products and services being offered in these markets nowadays. Moreover, we have conducted a case study on one particular productive and dynamic drug market, i.e., Cannazon. Our initial goal was to understand its evolution over time, analyzing the variation of products in stock and their price longitudinally. We realized, though, that during the period of study the market suffered a DDoS attack which damaged its reputation and affected users' trust on it, which was a potential reason which lead to the subsequent closure of the market by its operators. Consequently, our study provides insights regarding the last days of operation of such a productive market, and showcases the effectiveness of a potential intervention approach by means of disrupting the service and fostering mistrust.
Web evolution and Web 2.0 social media tools facilitate communication and support the online economy. On the other hand, these tools are actively used by extremist, terrorist and criminal groups. These malicious groups use these new communication channels, such as forums, blogs and social networks, to spread their ideologies, recruit new members, market their malicious goods and raise their funds. They rely on anonymous communication methods that are provided by the new Web. This malicious part of the web is called the “dark web”. Dark web analysis became an active research area in the last few decades, and multiple research studies were conducted in order to understand our enemy and plan for counteract. We have conducted a systematic literature review to identify the state-of-art and open research areas in dark web analysis. We have filtered the available research papers in order to obtain the most relevant work. This filtration yielded 28 studies out of 370. Our systematic review is based on four main factors: the research trends used to analyze dark web, the employed analysis techniques, the analyzed artifacts, and the accuracy and confidence of the available work. Our review results have shown that most of the dark web research relies on content analysis. Also, the results have shown that forum threads are the most analyzed artifacts. Also, the most significant observation is the lack of applying any accuracy metrics or validation techniques by most of the relevant studies. As a result, researchers are advised to consider using acceptance metrics and validation techniques in their future work in order to guarantee the confidence of their study results. In addition, our review has identified some open research areas in dark web analysis which can be considered for future research work.
The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.
Cyber threat intelligence (CTI) is vital for enabling effective cybersecurity decisions by providing timely, relevant, and actionable information about emerging threats. Monitoring the dark web to generate CTI is one of the upcoming trends in cybersecurity. As a result, developing CTI capabilities with the dark web investigation is a significant focus for cybersecurity companies like Deepwatch, DarkOwl, SixGill, ThreatConnect, CyLance, ZeroFox, and many others. In addition, the dark web marketplace (DWM) monitoring tools are of much interest to law enforcement agencies (LEAs). The fact that darknet market participants operate anonymously and online transactions are pseudo-anonymous makes it challenging to identify and investigate them. Therefore, keeping up with the DWMs poses significant challenges for LEAs today. Nevertheless, the offerings on the DWM give insights into the dark web economy to LEAs. The present work is one such attempt to describe and analyze dark web market data collected for CTI using a dark web crawler. After processing and labeling, authors have 53 DWMs with their product listings and pricing.
Researchers have investigated the dark web for various purposes and with various approaches. Most of the dark web data investigation focused on analysing text collected from HTML pages of websites hosted on the dark web. In addition, researchers have documented work on dark web image data analysis for a specific domain, such as identifying and analyzing Child Sexual Abusive Material (CSAM) on the dark web. However, image data from dark web marketplace postings and forums could also be helpful in forensic analysis of the dark web investigation.The presented work attempts to conduct image classification on classes other than CSAM. Nevertheless, manually scanning thousands of websites from the dark web for visual evidence of criminal activity is time and resource intensive. Therefore, the proposed work presented the use of quantum computing to classify the images using a Quantum Convolutional Neural Network (QCNN). Authors classified dark web images into four categories alcohol, drugs, devices, and cards. The provided dataset used for work discussed in the paper consists of around 1242 images. The image dataset combines an open source dataset and data collected by authors. The paper discussed the implementation of QCNN and offered related performance measures.
Cybercrime is growing dramatically in the technological world nowadays. World Wide Web criminals exploit the personal information of internet users and use them to their advantage. Unethical users leverage the dark web to buy and sell illegal products or services and sometimes they manage to gain access to classified government information. A number of illegal activities that can be found in the dark web include selling or buying hacking tools, stolen data, digital fraud, terrorists activities, drugs, weapons, and more. The aim of this project is to collect evidence of any malicious activity in the dark web by using computer security mechanisms as traps called honeypots.
With increasing monitoring and regulation by platforms, communities with criminal interests are moving to the dark web, which hosts content ranging from whistle-blowing and privacy, to drugs, terrorism, and hacking. Using post discussion data from six dark web forums we construct six interaction graphs and use social network analysis tools to study these underground communities. We observe the structure of each network to highlight structural patterns and identify nodes of importance through network centrality analysis. Our findings suggest that in the majority of the forums some members are highly connected and form hubs, while most members have a lower number of connections. When examining the posting activities of central nodes we found that most of the central nodes post in sub-forums with broader topics, such as general discussions and tutorials. These members play different roles in the different forums, and within each forum we identified diverse user profiles.
The regularity of devastating cyber-attacks has made cybersecurity a grand societal challenge. Many cybersecurity professionals are closely examining the international Dark Web to proactively pinpoint potential cyber threats. Despite its potential, the Dark Web contains hundreds of thousands of non-English posts. While machine translation is the prevailing approach to process non-English text, applying MT on hacker forum text results in mistranslations. In this study, we draw upon Long-Short Term Memory (LSTM), Cross-Lingual Knowledge Transfer (CLKT), and Generative Adversarial Networks (GANs) principles to design a novel Adversarial CLKT (A-CLKT) approach. A-CLKT operates on untranslated text to retain the original semantics of the language and leverages the collective knowledge about cyber threats across languages to create a language invariant representation without any manual feature engineering or external resources. Three experiments demonstrate how A-CLKT outperforms state-of-the-art machine learning, deep learning, and CLKT algorithms in identifying cyber-threats in French and Russian forums.
In recent years, cyberattack techniques have become more and more sophisticated each day. Even if defense measures are taken against cyberattacks, it is difficult to prevent them completely. It can also be said that people can only fight defensively against cyber criminals. To address this situation, it is necessary to predict cyberattacks and take appropriate measures in advance, and the use of intelligence is important to make this possible. In general, many malicious hackers share information and tools that can be used for attacks on the dark web or in the specific communities. Therefore, we assume that a lot of intelligence, including this illegal content exists in cyber space. By using the threat intelligence, detecting attacks in advance and developing active defense is expected these days. However, such intelligence is currently extracted manually. In order to do this more efficiently, we apply machine learning to various forum posts that exist on the dark web, with the aim of extracting forum posts containing threat information. By doing this, we expect that detecting threat information in cyber space in a timely manner will be possible so that the optimal preventive measures will be taken in advance.