Visible to the public Biblio

Filters: Keyword is distribution network  [Clear All Filters]
2023-03-31
You, Jinliang, Zhang, Di, Gong, Qingwu, Zhu, Jiran, Tang, Haiguo, Deng, Wei, Kang, Tong.  2022.  Fault phase selection method of distribution network based on wavelet singular entropy and DBN. 2022 China International Conference on Electricity Distribution (CICED). :1742–1747.
The selection of distribution network faults is of great significance to accurately identify the fault location, quickly restore power and improve the reliability of power supply. This paper mainly studies the fault phase selection method of distribution network based on wavelet singular entropy and deep belief network (DBN). Firstly, the basic principles of wavelet singular entropy and DBN are analyzed, and on this basis, the DBN model of distribution network fault phase selection is proposed. Firstly, the transient fault current data of the distribution network is processed to obtain the wavelet singular entropy of the three phases, which is used as the input of the fault phase selection model; then the DBN network is improved, and an artificial neural network (ANN) is introduced to make it a fault Select the phase classifier, and specify the output label; finally, use Simulink to build a simulation model of the IEEE33 node distribution network system, obtain a large amount of data of various fault types, generate a training sample library and a test sample library, and analyze the neural network. The adjustment of the structure and the training of the parameters complete the construction of the DBN model for the fault phase selection of the distribution network.
ISSN: 2161-749X
2021-09-07
Liu, Shu, Tao, Xingyu, Hu, Wenmin.  2020.  Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
2021-03-29
Dai, Q., Shi, L..  2020.  A Game-Theoretic Analysis of Cyber Attack-Mitigation in Centralized Feeder Automation System. 2020 IEEE Power Energy Society General Meeting (PESGM). :1–5.
The intelligent electronic devices widely deployed across the distribution network are inevitably making the feeder automation (FA) system more vulnerable to cyber-attacks, which would lead to disastrous socio-economic impacts. This paper proposes a three-stage game-theoretic framework that the defender allocates limited security resources to minimize the economic impacts on FA system while the attacker deploys limited attack resources to maximize the corresponding impacts. Meanwhile, the probability of successful attack is calculated based on the Bayesian attack graph, and a fault-tolerant location technique for centralized FA system is elaborately considered during analysis. The proposed game-theoretic framework is converted into a two-level zero-sum game model and solved by the particle swarm optimization (PSO) combined with a generalized reduced gradient algorithm. Finally, the proposed model is validated on distribution network for RBTS bus 2.
2021-02-16
Poudel, S., Sun, H., Nikovski, D., Zhang, J..  2020.  Distributed Average Consensus Algorithm for Damage Assessment of Power Distribution System. 2020 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
In this paper, we propose a novel method to obtain the damage model (connectivity) of a power distribution system (PDS) based on distributed consensus algorithm. The measurement and sensing units in the distribution network are modeled as an agent with limited communication capability that exchanges the information (switch status) to reach an agreement in a consensus algorithm. Besides, a communication graph is designed for agents to run the consensus algorithm which is efficient and robust during the disaster event. Agents can dynamically communicate with the other agent based on available links that are established and solve the distributed consensus algorithm quickly to come up with the correct topology of PDS. Numerical simulations are performed to demonstrate the effectiveness of the proposed approach with the help of an IEEE 123-node test case with 3 different sub-graphs.
2020-08-10
Onaolapo, A.K., Akindeji, K.T..  2019.  Application of Artificial Neural Network for Fault Recognition and Classification in Distribution Network. 2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA). :299–304.
Occurrence of faults in power systems is unavoidable but their timely recognition and location enhances the reliability and security of supply; thereby resulting in economic gain to consumers and power utility alike. Distribution Network (DN) is made smarter by the introduction of sensors and computers into the system. In this paper, detection and classification of faults in DN using Artificial Neural Network (ANN) is emphasized. This is achieved through the employment of Back Propagation Algorithm (BPA) of the Feed Forward Neural Network (FFNN) using three phase voltages and currents as inputs. The simulations were carried out using the MATLAB® 2017a. ANN with various hidden layers were analyzed and the results authenticate the effectiveness of the method.
2020-05-22
Jaiswal, Supriya, Ballal, Makarand Sudhakar.  2019.  A Novel Online Technique for Fixing the Accountability of Harmonic Injector in Distribution Network. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1—7.

Harmonic distortions come into existence in the power system not only due to nonlinear loads of consumers but also due to custom power devices used by power utilities. These distortions are harmful to the power networks as these produce over heating of appliances, reduction in their life expectancy, increment in electricity bill, false tripping, etc. This paper presents an effective, simple and direct approach to identify the problematic cause either consumer load or utility source or both responsible for harmonics injection in the power system. This technique does not require mathematical model, historical data and expert knowledge. The online methodology is developed in the laboratory and tested for different polluted loads and source conditions. Experimental results are found satisfactory. This proposed technique has substantial potential to determine the problematic cause without any power interruption by plug and play operation just like CCTV.

2020-03-16
Eneh, Joy Nnenna, Onyekachi Orah, Harris, Emeka, Aka Benneth.  2019.  Improving the Reliability and Security of Active Distribution Networks Using SCADA Systems. 2019 IEEE PES/IAS PowerAfrica. :110–115.
The traditional electricity distribution system is rapidly shifting from the passive infrastructure to a more active infrastructure, giving rise to a smart grid. In this project an active electricity distribution network and its components have been studied. A 14-node SCADA-based active distribution network model has been proposed for managing this emerging network infrastructure to ensure reliability and protection of the network The proposed model was developed using matlab /simulink software and the fuzzy logic toolbox. Surge arresters and circuit breakers were modelled and deployed in the network at different locations for protection and isolation of fault conditions. From the reliability analysis of the proposed model, the failure rate and outage hours were reduced due to better response of the system to power fluctuations and fault conditions.
2020-02-17
Zhao, Guowei, Zhao, Rui, Wang, Qiang, Xue, Hui, Luo, Fang.  2019.  Virtual Network Mapping Algorithm for Self-Healing of Distribution Network. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1442–1445.
This paper focuses on how to provide virtual network (VN) with the survivability of node failure. In the SVNE that responds to node failures, the backup mechanism provided by the VN initial mapping method should be as flexible as possible, so that backup resources can be shared among the VNs, thereby providing survivability support for the most VNs with the least backup overhead, which can improve The utilization of backup resources can also improve the survivability of VN to deal with multi-node failures. For the remapping method of virtual networks, it needs to be higher because it involves both remapping of virtual nodes and remapping of related virtual links. The remapping efficiency, so as to restore the affected VN to a normal state as soon as possible, to avoid affecting the user's business experience. Considering that the SVNE method that actively responds to node failures always has a certain degree of backup resource-specific phenomenon, this section provides a SVNE method that passively responds to node failures. This paper mainly introduces the survivability virtual network initial mapping method based on physical node recoverability in this method.
Maykot, Arthur S., Aranha Neto, Edison A. C., Oliva, Neimar A..  2019.  Automation of Manual Switches in Distribution Networks Focused on Self-Healing: A Step toward Smart Grids. 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America). :1–4.
This work describes the self-healing systems and their benefits in the power distribution networks, with the objective of indicating which manual switch should become, as a matter of priority, automatic. The computational tool used is based on graph theory, genetic algorithms and multicriteria evaluation. There are benefits for consumers, that will benefit from a more reliable and stable system, and for the utility, that can reduce costs with team field and financial compensations payed to consumers in case of continuity indexes violation. Data from a real distribution network from the state of Sao Paulo will be used as a case study for the application of the methodology.
2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

2017-11-13
Patti, E., Syrri, A. L. A., Jahn, M., Mancarella, P., Acquaviva, A., Macii, E..  2016.  Distributed Software Infrastructure for General Purpose Services in Smart Grid. IEEE Transactions on Smart Grid. 7:1156–1163.

In this paper, the design of an event-driven middleware for general purpose services in smart grid (SG) is presented. The main purpose is to provide a peer-to-peer distributed software infrastructure to allow the access of new multiple and authorized actors to SGs information in order to provide new services. To achieve this, the proposed middleware has been designed to be: 1) event-based; 2) reliable; 3) secure from malicious information and communication technology attacks; and 4) to enable hardware independent interoperability between heterogeneous technologies. To demonstrate practical deployment, a numerical case study applied to the whole U.K. distribution network is presented, and the capabilities of the proposed infrastructure are discussed.