Biblio
In the universal Android system, each application runs in its own sandbox, and the permission mechanism is used to enforce access control to the system APIs and applications. However, permission leak could happen when an application without certain permission illegally gain access to protected resources through other privileged applications. In order to address permission leak in a trusted execution environment, this paper designs security architecture which contains sandbox module, middleware module, usage and access control module, and proposes an effective usage and access control scheme that can prevent permission leak in a trusted execution environment. Security architecture based on the scheme has been implemented on an ARM-Android platform, and the evaluation of the proposed scheme demonstrates its effectiveness in mitigating permission leak vulnerabilities.
Cloud computing is a wide-spread technology that enables the enterprises to provide services to their customers with a lower cost, higher performance, better availability and scalability. However, privacy and security in cloud computing has always been a major challenge to service providers and a concern to its users. Trusted computing has led its way in securing the cloud computing and virtualized environment, during the past decades. In this paper, first we study virtualized trusted platform modules and integration of vTPM in hypervisor-based virtualization. Then we propose two architectural solutions for integrating the vTPM in container-based virtualization model.
- « first
- ‹ previous
- 1
- 2
- 3