Visible to the public Biblio

Filters: Keyword is trusted platform modules  [Clear All Filters]
2022-08-04
Pirker, Dominic, Fischer, Thomas, Witschnig, Harald, Steger, Christian.  2021.  velink - A Blockchain-based Shared Mobility Platform for Private and Commercial Vehicles utilizing ERC-721 Tokens. 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP). :62—67.
Transportation of people and goods is important and crucial in the context of smart cities. The trend in regard of people's mobility is moving from privately owned vehicles towards shared mobility. This trend is even stronger in urban areas, where space for parking is limited, and the mobility is supported by the public transport system, which lowers the need for private vehicles. Several challenges and barriers of currently available solutions retard a massive growth of this mobility option, such as the trust problem, data monopolism, or intermediary costs. Decentralizing mobility management is a promising approach to solve the current problems of the mobility market, allowing to move towards a more usable internet of mobility and smart transportation. Leveraging blockchain technology allows to cut intermediary costs, by utilizing smart contracts. Important in this ecosystem is the proof of identity of participants in the blockchain network. To proof the possession of the claimed identity, the private key corresponding to the wallet address is utilized, and therefore essential to protect. In this paper, a blockchain-based shared mobility platform is proposed and a proof-of-concept is shown. First, current problems and state-of-the-art systems are analyzed. Then, a decentralized concept is built based on ERC-721 tokens, implemented in a smart contract, and augmented with a Hardware Security Module (HSM) to protect the confidential key material. Finally, the system is evaluated and compared against state-of-the-art solutions.
[Anonymous].  2021.  Secure Hardware Design: Starting from the Roots of Trust. 2021 IEEE European Test Symposium (ETS). :i—i.
Summary form only given, as follows. The complete presentation was not made available for publication as part of the conference proceedings. What is “hardware” security? The network designer relies on the security of the router box. The software developer relies on the TPM (Trusted Platform Module). The circuit designer worries about side-channel attacks. At the same time, electronics shrink: sensor nodes, IOT devices, smart devices are becoming more and more available. Adding security and cryptography to these often very resource constraint devices is a challenge. This presentation will focus on Physically Unclonable Functions and True Random Number Generators, two roots of trust, and their security testing.
Eckel, Michael, Kuzhiyelil, Don, Krauß, Christoph, Zhdanova, Maria, Katzenbeisser, Stefan, Cosic, Jasmin, Drodt, Matthias, Pitrolle, Jean-Jacques.  2021.  Implementing a Security Architecture for Safety-Critical Railway Infrastructure. 2021 International Symposium on Secure and Private Execution Environment Design (SEED). :215—226.
The digitalization of safety-critical railroad infrastructure enables new types of attacks. This increases the need to integrate Information Technology (IT) security measures into railroad systems. For that purpose, we rely on a security architecture for a railway object controller which controls field elements that we developed in previous work. Our architecture enables the integration of security mechanisms into a safety-certified railway system. In this paper, we demonstrate the practical feasibility of our architecture by using a Trusted Platform Module (TPM) 2.0 and a Multiple Independent Levels of Safety and Security (MILS) Separation Kernel (SK) for our implementation. Our evaluation includes a test bed and shows how certification and homologation can be achieved.
de la Piedra, Antonio, Collado, Raphaël.  2021.  Protection Profile Bricks for Secure IoT Devices. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :8—13.
The Internet of Things (IoT) paradigm has been proposed in the last few years with the goal of addressing technical problems in fields such as home and industrial automation, smart lighting systems and traffic monitoring. However, due to the very nature of the IoT devices (generally low-powered and often lacking strong security functionalities), typical deployments pose a great risk in terms of security and privacy. In this respect, the utilization of both a Trusted Execution Environment (TEE) and a Trusted Platform Module (TPM) can serve as a countermeasure against typical attacks. Furthermore, these functional blocks can serve as safe key storage services and provide a robust secure boot implementation and a firmware update mechanism, thus ensuring run-time authentication and integrity. The Common Criteria for Information Technology Security Evaluation allows to determine the degree of attainment of precise security properties in a product. The main objective of this work is to identify, propose and compose bricks of protection profile (PP), as defined by Common Criteria, that are applicable to secure IoT architectures. Moreover, it aims at giving some guiding rules and facilitate future certifications of components and/or their composition. Finally, it also provides a structure for a future methodology of assessment for IoT devices.
Ganesan, Dhandapani, Sharum, Mohd Yunus, Mohd Sani, Nor Fazlida binti, Mohd Ariffin, Noor Afiza bt.  2021.  A Survey on Advanced Schemes applied within Trusted Platform modules (TPM) and IaaS in cloud computing. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). :317—322.
Trusted Platform Modules (TPM) have grown to be crucial safeguards from the number of software-based strikes. By giving a restricted range of cryptographic providers by way of a well-defined user interface, divided as a result of the program itself, TPM and Infrastructure as a service (IaaS) can function as a root of loyalty so when a foundation aimed at advanced equal protection methods. This information studies the works aimed at uses on TPM within the cloud computing atmosphere, by journal times composed somewhere among 2013 as well as 2020. It identifies the present fashion as well as goals from these technologies within the cloud, as well as the kind of risks that it mitigates. The primary investigation is being focused on the TPM's association to the IaaS security based on the authorization and the enabling schema for integrity. Since integrity measurement is among the key uses of TPM and IaaS, particular focus is given towards the evaluation of operating period phases as well as S/W levels it's put on to. Finally, the deep survey on recent schemes can be applied on Cloud Environment.
Boubakri, Marouene, Chiatante, Fausto, Zouari, Belhassen.  2021.  Towards a firmware TPM on RISC-V. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). :647—650.
To develop the next generation of Internet of Things, Edge devices and systems which leverage progress in enabling technologies such as 5G, distributed computing and artificial intelligence (AI), several requirements need to be developed and put in place to make the devices smarter. A major requirement for all the above applications is the long-term security and trust computing infrastructure. Trusted Computing requires the introduction inside of the platform of a Trusted Platform Module (TPM). Traditionally, a TPM was a discrete and dedicated module plugged into the platform to give TPM capabilities. Recently, processors manufacturers started integrating trusted computing features into their processors. A significant drawback of this approach is the need for a permanent modification of the processor microarchitecture. In this context, we suggest an analysis and a design of a software-only TPM for RISC-V processors based on seL4 microkernel and OP-TEE.
2021-12-21
Zhang, Fengqing, Jiang, Xiaoning.  2021.  The Zero Trust Security Platform for Data Trusteeship. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :1014–1017.
Cloud storage is a low-cost and convenient storage method, but the nature of cloud storage determines the existence of security risks for data uploaded by users. In order to ensure the security of users' data in third-party cloud platforms, a zero trust security platform for data trusteeship is proposed. The platform introduces the concept of zero trust, which meets the needs of users to upload sensitive data to untrusted third-party cloud platforms by implementing multiple functional modules such as sensitivity analysis service, cipher index service, attribute encryption service.
2021-11-08
Aitchison, Callum, Buckle, Roman, Ch'ng, Alvin, Clarke, Christian, Malley, Jacob, Halak, Basel.  2020.  On the Integration of Physically Unclonable Functions into ARM TrustZone Security Technology. 2020 European Conference on Circuit Theory and Design (ECCTD). :1–4.
As Internet of Things (IoT) devices are increasingly used in industry and become further integrated into our daily lives the security of such devices is of paramount concern. Ensuring that the large amount of information that these devices collect is protected and only accessible to authenticated users is a critical requirement of the industry. One potentially inexpensive way to improve device security utilises a Physically Unclonable Function (PUF) to generate a unique random response per device. This random response can be generated in such a way that it can be regenerated reliably and repeatably allowing the response to be considered a signature for each device. This signature could then be used for authentication or key generation purposes, improving trust in IoT devices. The advantage of a PUF based system is that the response does not need to be stored in nonvolatile memory as it is regenerated on demand, hardening the system against physical attacks. With SoC FPGAs being inexpensive and widely available there is potential for their use in both industrial and consumer applications as an additional layer of hardware security. In this paper we investigate and implement a Trusted Execution Environment (TEE) based around a PUF solely implemented in the FPGA fabric on a Xilinx Zynq-7000 SoC FPGA. The PUF response is used to seed a generic entropy maximisation function or Pseudorandom Number Generator (PRNG) with a system controller capable of encrypting data to be useful only to the device. This system interacts with a software platform running in the ARM TrustZone on the ARM Cortex core in the SoC, which handles requests between user programs and the FPGA. The proposed PUF-based security module can generate unique random keys able to pass all NIST tests and protects against physical attacks on buses and nonvolatile memories. These improvements are achieved at a cost of fewer than half the resources on the Zynq-7000 SoC FPGA.
Hedabou, Mustapha, Abdulsalam, Yunusa Simpa.  2020.  Efficient and Secure Implementation of BLS Multisignature Scheme on TPM. 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
In many applications, software protection can not be sufficient to provide high security needed by some critical applications. A noteworthy example are the bitcoin wallets. Designed the most secure piece of software, their security can be compromised by a simple piece of malware infecting the device storing keys used for signing transactions. Secure hardware devices such as Trusted Platform Module (TPM) offers the ability to create a piece of code that can run unmolested by the rest of software applications hosted in the same machine. This has turned out to be a valuable approach for preventing several malware threats. Unfortunately, their restricted functionalities make them inconsistent with the use of multi and threshold signature mechanisms which are in the heart of real world cryptocurrency wallets implementation. This paper proposes an efficient multi-signature scheme that fits the requirement of the TPM. Based on discrete logarithm and pairings, our scheme does not require any interaction between signers and provide the same benefits as the well established BLS signature scheme. Furthermore, we proposed a formal model of our design and proved it security in a semi-honest model. Finally, we implemented a prototype of our design and studied its performance. From our experimental analysis, the proposed design is highly efficient and can serve as a groundwork for using TPM in future cryptocurrency wallets.
Qian, Dazan, Guo, Songhui, Sun, Lei, Liu, Haidong, Hao, Qianfang, Zhang, Jing.  2020.  Trusted Virtual Network Function Based on vTPM. 2020 7th International Conference on Information Science and Control Engineering (ICISCE). :1484–1488.
Mobile communication technology is developing rapidly, and this is integrated with technologies such as Software Defined Network (SDN), cloud computing, and Network Function Virtualization (NFV). Network Functions (NFs) are no longer deployed on dedicated hardware devices, while deployed in Virtual Machines (VMs) or containers as Virtual Network Functions (VNFs). If VNFs are tampered with or replaced, the communication system will not function properly. Our research is to enhance the security of VNFs using trusted computing technology. By adding Virtual Trusted Platform Module (vTPM) to the virtualization platform, the chain of trust extends from the VM operating system to VNFs within the VM. Experimental results prove that the solution can effectively protect the integrity of VNFs from being attacked.
Khalfaoui, Chaima, Ayed, Samiha, Esseghir, Moez.  2020.  A Stochastic Approach for an Enhanced Trust Management in a Decentralized Healthcare Environment. 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :26–31.
Medical institutions are increasingly adopting IoT platforms to share data, communicate rapidly and improve healthcare treatment abilities. However, this trend is also raising the risk of potential data manipulation attacks. In decentralized networks, defense mechanisms against external entities have been widely enabled while protection against insider attackers is still the weakest link of the chain. Most of the platforms are based on the assumption that all the insider nodes are trustworthy. However, these nodes are exploiting of this assumption to lead manipulation attacks and violate data integrity and reliability without being detected. To address this problem, we propose a secure decentralized management system able to detect insider malicious nodes. Our proposal is based on a three layer architecture: storage layer, blockchain based network layer and IoT devices layer. In this paper, we mainly focus on the network layer where we propose to integrate a decentralized trust based authorization module. This latter allows updating dynamically the nodes access rights by observing and evaluating their behavior. To this aim, we combine probabilistic modelling and stochastic modelling to classify and predict the nodes behavior. Conducted performance evaluation and security analysis show that our proposition provides efficient detection of malicious nodes compared to other trust based management approaches.
Shang, Wenli, Zhang, Xiule, Chen, Xin, Liu, Xianda, Chen, Chunyu, Wang, Xiaopeng.  2020.  The Research and Application of Trusted Startup of Embedded TPM. 2020 39th Chinese Control Conference (CCC). :7669–7676.
In view of the security threats caused by the code execution vulnerability of the industrial control system, design the trusted security architecture of the industrial control system based on the embedded system. From the trusted startup of industrial control equipment, the safety protection for industrial control system is completed. The scheme is based on TPM and Xilinx Zynq-7030 to build an industrial trusted computing environment and complete the trusted startup process. Experiment shows that this method can effectively prevent the destruction of malicious code during the startup process of embedded system and provide technical support for the construction of trusted computing environment of industrial control system.
Ruchkin, Vladimir, Fulin, Vladimir, Romanchuk, Vitaly, Koryachko, Alexei, Ruchkina, Ekaterina.  2020.  Personal Trusted Platform Module for the Multi-Core System of 5G Security and Privacy. 2020 ELEKTRO. :1–4.
The article is devoted to the choice of personal means of the 5G defense in dependence of hard- and software available to the user. The universal module MS 127.04 and its software compatible unit can be universally configured for use. An intelligent hardware and software platform is proposed for multi-core setting of policies for the automatic encryption of confidential data and selective blocking related to the implementation of computing security and confidentiality of data transfer, using such additional specially. A platform that resists the external influences is described. The platform is based on a universal module MS 127.05 (produced in Russia), that is a heterogeneous multiprocessor system on a chip), the system features 16 processor cores (NeuroMatrix Core 4) and five ARM Cortex-A5 units (ULSI 1879VM8Ya.
Khan, Ammar, Blair, Nicholas, Farnell, Chris, Mantooth, H. Alan.  2020.  Integrating Trusted Platform Modules in Power Electronics. 2020 IEEE CyberPELS (CyberPELS). :1–5.
Trusted Platform Modules (TPMs) are specialized chips that store RSA keys specific to the host system for hardware authentication. The RSA keys refer to an encryption technology developed by RSA Data Security. The RSA algorithm accounts for the fact that there is no efficient way to factor extremely large numbers. Each TPM chip contains an RSA Key pair known as the Endorsement Key that cannot be accessed by software. The TPM contains an additional key, called the Attestation Identity Key that protects the device itself against unauthorized firmware and software modification by implementing hash functions on critical sections of the software and firmware before execution. As a result, the TPM can be used as a chip for handling encryption for a larger system to offer an additional layer of security. Furthermore, the TPM can also be used for managing encryption keys, as a Storage Root Key is created when a user or administrator takes ownership of the system. However, merging the TPM into a system does come with additional costs along with potential benefits. This paper focuses on integrating a TPM into a system implemented on an ARM processor that engages with power electronics, and then presents the security benefits associated with a TPM.
Guojie, Liu, Jianbiao, Zhang.  2020.  A TPCM-Based Trusted PXE Boot Method For Servers. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). :996–1000.
Information level protection standard 2.0 requires trusted verification of system bootstrappers, system programs, etc. of server equipment based on trusted root. According to the requirements of information level protection standard, this paper puts forward a network trusted start-up scheme based on the trusted platform control module to guarantee the security and trust of the server's BIOS firmware, PXE boot file and Linux system file. When publishing BIOS firmware, PXE startup file, Linux system file, the state-secret algorithm SM3 is used to calculate the summary value as the benchmark value, and stored in the trusted platform control module, BIOS firmware, Linux boot file. When the server starts up with PXE, the BIOS firmware is measured by the Trusted Platform Control Module, the BIOS Start Environment Measures PXE Boot File, and the PXE Boot File measures the Linux system file. The trusted platform control module is the trust root level measurement level, the first level of trust level, the trust chain, the implementation of a trusted server operating environment. The method proposed in this paper is tested on the domestic autonomous controllable Sunway server, and the experimental results show that the method proposed in this paper is feasible.
Ruchkin, V., Soldatov, G., Fulin, V., Kostrov, B., Ruchkina, E..  2020.  Macros for Coding Information Encryption Amp; Decryption in Trusted Platform Module. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1–5.
This article describes the process assembling of Encryption & Decryption In Trusted Platform Module of encoding information in NM640X \textregistered. Encoding of information, carried out in assembly language according to Gost 28147-89. It is a realisation of standard GOST 28147-89- Russian state symmetric key block cipher. GOST 28147-89 has 64-bit to access the kernel, trust, and allocated memory in the BlockSize and 256-bit KeySize.
2021-09-30
Shuang, Zhang, Xinyu, Wan, Deqi, Kong, Yangming, Guo.  2020.  Embedded Virtualization Computing Platform Security Architecture Based on Trusted Computing. 2020 7th International Conference on Dependable Systems and Their Applications (DSA). :1–5.
With the application of virtualization and multi-core processor in embedded system, the computing capacity of embedded system has been improved comprehensively, but it is also faced with malicious attacks against virtualization technology. First, it was analyzed the security requirements of each layer of embedded virtualization computing platform. Aiming at the security requirements, it was proposed the security architecture of embedded virtualization computing platform based on trusted computing module. It was designed the hardware trusted root on the hardware layer, the virtualization trusted root on the virtual machine manager layer, trusted computing component and security function component on guest operation system layer. Based on the trusted roots, it was built the static extension of the trusted chain on the platform. This security architecture can improve the active security protection capability of embedded virtualization computing platform.
2020-12-07
Siddiqui, A. S., Gui, Y., Saqib, F..  2019.  Boot time Bitstream Authentication for FPGAs. 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT IoT and AI (HONET-ICT). :189–190.
Major commercial Field Programmable Gate Arrays (FPGAs) vendors provide encryption and authentication for programmable logic fabric (PL) bitstream using AES and RSA respectively. They are limited in scope of security that they provide and have proven to be vulnerable to different attacks. As-such, in-field deployed devices are susceptible to attacks where either a configuration bitstream, application software or dynamically reconfigurable bitstreams can be maliciously replaced. This hardware demo presents a framework for secure boot and runtime authentication for FPGAs. The presented system employs on-board cryptographic mechanisms and third-party established architectures such as Trusted Platform Module (TPM). The scope of this hardware demo is of systems level.
Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., Wesemeyer, S..  2019.  A Symbolic Analysis of ECC-Based Direct Anonymous Attestation. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :127–141.
Direct Anonymous Attestation (DAA) is a cryptographic scheme that provides Trusted Platform Module TPM-backed anonymous credentials. We develop Tamarin modelling of the ECC-based version of the protocol as it is standardised and provide the first mechanised analysis of this standard. Our analysis confirms that the scheme is secure when all TPMs are assumed honest, but reveals a break in the protocol's expected authentication and secrecy properties for all TPMs even if only one is compromised. We propose and formally verify a minimal fix to the standard. In addition to developing the first formal analysis of ECC-DAA, the paper contributes to the growing body of work demonstrating the use of formal tools in supporting standardisation processes for cryptographic protocols.
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
Sundar, S., Yellai, P., Sanagapati, S. S. S., Pradhan, P. C., Y, S. K. K. R..  2019.  Remote Attestation based Software Integrity of IoT devices. 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). :1–4.
Internet of Things is the new paradigm towards which the world is moving today. As these devices proliferate, security issues at these scales become more and more intimidating. Traditional approach like an antivirus does not work well with these devices and there is a need to look for a more trusted solution. For a device with reasonable computational power, we use a software trusted platform module for the cryptographic operations. In this paper, we have developed a model to remotely attest to the integrity of the processes running in the device. We have also explored the various features of the TPM (Trusted Platform Module) to gain insight into its working and also to ascertain those which can make this process better. This model depends on the server and the TPM to behave as roots of trust for this model. The client computes the HMAC (Hashed Message Authentication Code) values and appends a nonce and sends these values periodically to the server via asymmetric encryption. The HMAC values are verified by the server by comparing with its known good values (KGV) and the trustworthiness of the process is determined and accordingly an authorization response is sent.
Furtak, J., Zieliński, Z., Chudzikiewicz, J..  2019.  Security Domain for the Sensor Nodes with Strong Authentication. 2019 International Conference on Military Communications and Information Systems (ICMCIS). :1–6.
Nowadays interest in IoT solutions is growing. A significant barrier to the use of these solutions in military applications is to ensure the security of data transmission and authentication of data sources and recipients of the data. Developing an efficient solution to these problems requires finding a compromise between the facts that the sensors often are mobile, use wireless communication, usually have the small processing power and have little energy resources. The article presents the security domain designated for cooperating mobile sensor nodes. The domain has the following features: the strong authentication of each domain member, cryptographic protection of data exchange in the data link layer and protection of data stored in the sensor node resources. The domain is also prepared to perform diagnostic procedures and to exchange sensory data with other domains securely. At each node, the Trusted Platform Module (TPM) is used to support these procedures.
Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee, S., Marochko, A., Mattoon, D., Spiger, R., Thom, S..  2019.  Dominance as a New Trusted Computing Primitive for the Internet of Things. 2019 IEEE Symposium on Security and Privacy (SP). :1415–1430.
The Internet of Things (IoT) is rapidly emerging as one of the dominant computing paradigms of this decade. Applications range from in-home entertainment to large-scale industrial deployments such as controlling assembly lines and monitoring traffic. While IoT devices are in many respects similar to traditional computers, user expectations and deployment scenarios as well as cost and hardware constraints are sufficiently different to create new security challenges as well as new opportunities. This is especially true for large-scale IoT deployments in which a central entity deploys and controls a large number of IoT devices with minimal human interaction. Like traditional computers, IoT devices are subject to attack and compromise. Large IoT deployments consisting of many nearly identical devices are especially attractive targets. At the same time, recovery from root compromise by conventional means becomes costly and slow, even more so if the devices are dispersed over a large geographical area. In the worst case, technicians have to travel to all devices and manually recover them. Data center solutions such as the Intelligent Platform Management Interface (IPMI) which rely on separate service processors and network connections are not only not supported by existing IoT hardware, but are unlikely to be in the foreseeable future due to the cost constraints of mainstream IoT devices. This paper presents CIDER, a system that can recover IoT devices within a short amount of time, even if attackers have taken root control of every device in a large deployment. The recovery requires minimal manual intervention. After the administrator has identified the compromise and produced an updated firmware image, he/she can instruct CIDER to force the devices to reset and to install the patched firmware on the devices. We demonstrate the universality and practicality of CIDER by implementing it on three popular IoT platforms (HummingBoard Edge, Raspberry Pi Compute Module 3 and Nucleo-L476RG) spanning the range from high to low end. Our evaluation shows that the performance overhead of CIDER is generally negligible.
Hamadeh, H., Tyagi, A..  2019.  Physical Unclonable Functions (PUFs) Entangled Trusted Computing Base. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :177–180.
The center-piece of this work is a software measurement physical unclonable function (PUF). It measures processor chip ALU silicon biometrics in a manner similar to all PUFs. Additionally, it composes the silicon measurement with the data-dependent delay of a particular program instruction in a way that is difficult to decompose through a mathematical model. This approach ensures that each software instruction is measured if computed. The SW-PUF measurements bind the execution of software to a specific processor with a corresponding certificate. This makes the SW-PUF a promising candidate for applications requiring Trusted Computing. For instance, it could measure the integrity of an execution path by generating a signature that is unique to the specific program execution path and the processor chip. We present an area and energy-efficient scheme based on the SW-PUF to provide a more robust root of trust for measurement than the existing trusted platform module (TPM). To explore the feasibility of the proposed design, the SW-PUF has been implemented in HSPICE using 45 nm technology and evaluated on the FPGA platform.
Yekini, T. Akeem, Jaafar, F., Zavarsky, P..  2019.  Study of Trust at Device Level of the Internet of Things Architecture. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :150–155.
In the Internet of Things architecture, devices are frequently connected to the Internet either directly or indirectly. However, many IoT devices lack built-in security features such as device level encryption, user authentication and basic firewall protection. This paper discusses security risks in the layers of general Internet of Things architecture and shows examples of potential risks at each level of the architecture. The paper also compares IoT security solutions provided by three major vendors and shows that the solutions are mutually complementary. Nevertheless, none of the examined IoT solutions provides security at the device level of the IoT architecture model. In order to address risks at the device level of the architecture, an implementation of Trusted Platform Module and Unique Device Identifier on IoT devices and gateways for encryption, authentication and device management is advocated in the paper.