Visible to the public Biblio

Filters: Keyword is diagnostics  [Clear All Filters]
2019-11-04
Li, Teng, Ma, Jianfeng, Pei, Qingqi, Shen, Yulong, Sun, Cong.  2018.  Anomalies Detection of Routers Based on Multiple Information Learning. 2018 International Conference on Networking and Network Applications (NaNA). :206-211.

Routers are important devices in the networks that carry the burden of transmitting information among the communication devices on the Internet. If a malicious adversary wants to intercept the information or paralyze the network, it can directly attack the routers and then achieve the suspicious goals. Thus, preventing router security is of great importance. However, router systems are notoriously difficult to understand or diagnose for their inaccessibility and heterogeneity. The common way of gaining access to the router system and detecting the anomaly behaviors is to inspect the router syslogs or monitor the packets of information flowing to the routers. These approaches just diagnose the routers from one aspect but do not consider them from multiple views. In this paper, we propose an approach to detect the anomalies and faults of the routers with multiple information learning. We try to use the routers' information not from the developer's view but from the user' s view, which does not need any expert knowledge. First, we do the offline learning to transform the benign or corrupted user actions into the syslogs. Then, we try to decide whether the input routers' conditions are poor or not with clustering. During the detection phase, we use the distance between the event and the cluster to decide if it is the anomaly event and we can provide the corresponding solutions. We have applied our approach in a university network which contains Cisco, Huawei and Dlink routers for three months. We aligned our experiment with former work as a baseline for comparison. Our approach can gain 89.6% accuracy in detecting the attacks which is 5.1% higher than the former work. The results show that our approach performs in limited time as well as memory usages and has high detection and low false positives.

2019-06-10
Li, T., Ma, J., Pei, Q., Shen, Y., Sun, C..  2018.  Log-based Anomalies Detection of MANETs Routing with Reasoning and Verification. 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). :240–246.

Routing security plays an important role in Mobile Ad hoc Networks (MANETs). Despite many attempts to improve its security, the routing procedure of MANETs remains vulnerable to attacks. Existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them have not considered the privacy of the nodes during the anomalies detection, which depend on the central control program or a third party to supervise the whole network. In this paper, we present an approach called LAD which uses the raw logs of routers to construct control a flow graph and find the existing communication rules in MANETs. With the reasoning rules, LAD can detect both active and passive attacks launched during the routing phase. LAD can also protect the privacy of the nodes in the verification phase with the specific Merkle hash tree. Without deploying any special nodes to assist the verification, LAD can detect multiple malicious nodes by itself. To show that our approach can be used to guarantee the security of the MANETs, we deploy our experiment in NS3 as well as the practical router environment. LAD can improve the accuracy rate from 2.28% to 29.22%. The results show that LAD performs limited time and memory usages, high detection and low false positives.

2018-06-20
Li, T., Ma, J., Sun, C., Wei, D., Xi, N..  2017.  PVad: Privacy-Preserving Verification for Secure Routing in Ad Hoc Networks. 2017 International Conference on Networking and Network Applications (NaNA). :5–10.

Routing security has a great importance to the security of Mobile Ad Hoc Networks (MANETs). There are various kinds of attacks when establishing routing path between source and destination. The adversaries attempt to deceive the source node and get the privilege of data transmission. Then they try to launch the malicious behaviors such as passive or active attacks. Due to the characteristics of the MANETs, e.g. dynamic topology, open medium, distributed cooperation, and constrained capability, it is difficult to verify the behavior of nodes and detect malicious nodes without revealing any privacy. In this paper, we present PVad, an approach conducting privacy-preserving verification in the routing discovery phase of MANETs. PVad tries to find the existing communication rules by association rules instead of making the rules. PVad consists of two phases, a reasoning phase deducing the expected log data of the peers, and a verification phase using Merkle Hash Tree to verify the correctness of derived information without revealing any privacy of nodes on expected routing paths. Without deploying any special nodes to assist the verification, PVad can detect multiple malicious nodes by itself. To show our approach can be used to guarantee the security of the MANETs, we conduct our experiments in NS3 as well as the real router environment, and we improved the detection accuracy by 4% on average compared to our former work.

2017-11-13
Venugopalan, V., Patterson, C. D., Shila, D. M..  2016.  Detecting and thwarting hardware trojan attacks in cyber-physical systems. 2016 IEEE Conference on Communications and Network Security (CNS). :421–425.

Cyber-physical system integrity requires both hardware and software security. Many of the cyber attacks are successful as they are designed to selectively target a specific hardware or software component in an embedded system and trigger its failure. Existing security measures also use attack vector models and isolate the malicious component as a counter-measure. Isolated security primitives do not provide the overall trust required in an embedded system. Trust enhancements are proposed to a hardware security platform, where the trust specifications are implemented in both software and hardware. This distribution of trust makes it difficult for a hardware-only or software-only attack to cripple the system. The proposed approach is applied to a smart grid application consisting of third-party soft IP cores, where an attack on this module can result in a blackout. System integrity is preserved in the event of an attack and the anomalous behavior of the IP core is recorded by a supervisory module. The IP core also provides a snapshot of its trust metric, which is logged for further diagnostics.