Biblio
A3 is an execution management environment that aims to make network-facing applications and services resilient against zero-day attacks. A3 recently underwent two adversarial evaluations of its defensive capabilities. In one, A3 defended an App Store used in a Capture the Flag (CTF) tournament, and in the other, a tactically relevant network service in a red team exercise. This paper describes the A3 defensive technologies evaluated, the evaluation results, and the broader lessons learned about evaluations for technologies that seek to protect critical systems from zero-day attacks.
Video surveillance, closed-circuit TV and IP-camera systems became virtually omnipresent and indispensable for many organizations, businesses, and users. Their main purpose is to provide physical security, increase safety, and prevent crime. They also became increasingly complex, comprising many communication means, embedded hardware and non-trivial firmware. However, most research to date focused mainly on the privacy aspects of such systems, and did not fully address their issues related to cyber-security in general, and visual layer (i.e., imagery semantics) attacks in particular. In this paper, we conduct a systematic review of existing and novel threats in video surveillance, closed-circuit TV and IP-camera systems based on publicly available data. The insights can then be used to better understand and identify the security and the privacy risks associated with the development, deployment and use of these systems. We study existing and novel threats, along with their existing or possible countermeasures, and summarize this knowledge into a comprehensive table that can be used in a practical way as a security checklist when assessing cyber-security level of existing or new CCTV designs and deployments. We also provide a set of recommendations and mitigations that can help improve the security and privacy levels provided by the hardware, the firmware, the network communications and the operation of video surveillance systems. We hope the findings in this paper will provide a valuable knowledge of the threat landscape that such systems are exposed to, as well as promote further research and widen the scope of this field beyond its current boundaries.