Visible to the public Biblio

Filters: Keyword is texture features  [Clear All Filters]
2020-03-30
Huang, Jinjing, Cheng, Shaoyin, Lou, Songhao, Jiang, Fan.  2019.  Image steganography using texture features and GANs. 2019 International Joint Conference on Neural Networks (IJCNN). :1–8.
As steganography is the main practice of hidden writing, many deep neural networks are proposed to conceal secret information into images, whose invisibility and security are unsatisfactory. In this paper, we present an encoder-decoder framework with an adversarial discriminator to conceal messages or images into natural images. The message is embedded into QR code first which significantly improves the fault-tolerance. Considering the mean squared error (MSE) is not conducive to perfectly learn the invisible perturbations of cover images, we introduce a texture-based loss that is helpful to hide information into the complex texture regions of an image, improving the invisibility of hidden information. In addition, we design a truncated layer to cope with stego image distortions caused by data type conversion and a moment layer to train our model with varisized images. Finally, our experiments demonstrate that the proposed model improves the security and visual quality of stego images.
2017-11-20
Aqel, S., Aarab, A., Sabri, M. A..  2016.  Shadow detection and removal for traffic sequences. 2016 International Conference on Electrical and Information Technologies (ICEIT). :168–173.

This paper address the problem of shadow detection and removal in traffic vision analysis. Basically, the presence of the shadow in the traffic sequences is imminent, and therefore leads to errors at segmentation stage and often misclassified as an object region or as a moving object. This paper presents a shadow removal method, based on both color and texture features, aiming to contribute to retrieve efficiently the moving objects whose detection are usually under the influence of cast-shadows. Additionally, in order to get a shadow-free foreground segmentation image, a morphology reconstruction algorithm is used to recover the foreground disturbed by shadow removal. Once shadows are detected, an automatic shadow removal model is proposed based on the information retrieved from the histogram shape. Experimental results on a real traffic sequence is presented to test the proposed approach and to validate the algorithm's performance.