Visible to the public Biblio

Filters: Keyword is untrusted cloud  [Clear All Filters]
2021-02-22
Lei, X., Tu, G.-H., Liu, A. X., Xie, T..  2020.  Fast and Secure kNN Query Processing in Cloud Computing. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.
Advances in sensing and tracking technology lead to the proliferation of location-based services. Location service providers (LSPs) often resort to commercial public clouds to store the tremendous geospatial data and process location-based queries from data users. To protect the privacy of LSP's geospatial data and data user's query location against the untrusted cloud, they are required to be encrypted before sending to the cloud. Nevertheless, it is not easy to design a fast and secure location-based query processing scheme over the encrypted data. In this paper, we propose a Fast and Secure kNN (FSkNN) scheme to support secure k nearest neighbor (k NN) search in cloud computing. We reveal the inherent connection between an Sk NN protocol and a secure range query protocol and further describe how to construct FSkNN based on a secure range query protocol. FSkNN leverages a customized accuracy-assured strategy to ensure the result accuracy and adopts a data structure named random Bloom filter (RBF) to build a secure index for efficiently searching. We formally prove the security of FSkNN under the random oracle model. Our evaluation results show that FSkNN is highly practical.
2017-11-20
Massonet, P., Dupont, S., Michot, A., Levin, A., Villari, M..  2016.  Enforcement of global security policies in federated cloud networks with virtual network functions. 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA). :81–84.

Federated cloud networks are formed by federating virtual network segments from different clouds, e.g. in a hybrid cloud, into a single federated network. Such networks should be protected with a global federated cloud network security policy. The availability of network function virtualisation and service function chaining in cloud platforms offers an opportunity for implementing and enforcing global federated cloud network security policies. In this paper we describe an approach for enforcing global security policies in federated cloud networks. The approach relies on a service manifest that specifies the global network security policy. From this manifest configurations of the security functions for the different clouds of the federation are generated. This enables automated deployment and configuration of network security functions across the different clouds. The approach is illustrated with a case study where communications between trusted and untrusted clouds, e.g. public clouds, are encrypted. The paper discusses future work on implementing this architecture for the OpenStack cloud platform with the service function chaining API.