Biblio
Approaches for the automatic analysis of security policies on source code level cannot trivially be applied to binaries. This is due to the lacking high-level semantics of low-level object code, and the fundamental problem that control-flow recovery from binaries is difficult. We present a novel approach to recover the control-flow of binaries that is both safe and efficient. The key idea of our approach is to use the information contained in security mechanisms to approximate the targets of computed branches. To achieve this, we first define a restricted control transition intermediate language (RCTIL), which restricts the number of possible targets for each branch to a finite number of given targets. Based on this intermediate language, we demonstrate how a safe model of the control flow can be recovered without data-flow analyses. Our evaluation shows that that makes our solution more efficient than existing solutions.
There has been a great deal of work on learning new robot skills, but very little consideration of how these newly acquired skills can be integrated into an overall intelligent system. A key aspect of such a system is compositionality: newly learned abilities have to be characterized in a form that will allow them to be flexibly combined with existing abilities, affording a (good!) combinatorial explosion in the robot's abilities. In this paper, we focus on learning models of the preconditions and effects of new parameterized skills, in a form that allows those actions to be combined with existing abilities by a generative planning and execution system.
Legacy work on correcting firewall anomalies operate with the premise of creating totally disjunctive rules. Unfortunately, such solutions are impractical from implementation point of view as they lead to an explosion of the number of firewall rules. In a related previous work, we proposed a new approach for performing assisted corrective actions, which in contrast to the-state-of-the-art family of radically disjunctive approaches, does not lead to a prohibitive increase of the configuration size. In this sense, we allow relaxation in the correction process by clearly distinguishing between constructive anomalies that can be tolerated and destructive anomalies that should be systematically fixed. However, a main disadvantage of the latter approach was its dependency on the guided input from the administrator which controversially introduces a new risk for human errors. In order to circumvent the latter disadvantage, we present in this paper a Firewall Policy Query Engine (FPQE) that renders the whole process of anomaly resolution a fully automated one and which does not require any human intervention. In this sense, instead of prompting the administrator for inserting the proper order corrective actions, FPQE executes those queries against a high level firewall policy. We have implemented the FPQE and the first results of integrating it with our legacy anomaly resolver are promising.