Visible to the public Biblio

Filters: Author is Chen, Chen  [Clear All Filters]
2023-07-13
Chen, Chen, Wang, Xingjun, Huang, Guanze, Liu, Guining.  2022.  An Efficient Randomly-Selective Video Encryption Algorithm. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1287–1293.
A randomly-selective encryption (RSE) algorithm is proposed for HEVC video bitstream in this paper. It is a pioneer algorithm with high efficiency and security. The encryption process is completely independent of video compression process. A randomly-selective sequence (RSS) based on the RC4 algorithm is designed to determine the extraction position in the video bitstream. The extracted bytes are encrypted by AES-CTR to obtain the encrypted video. Based on the high efficiency video coding (HEV C) bitstream, the simulation and analysis results show that the proposed RSE algorithm has low time complexity and high security, which is a promising tool for video cryptographic applications.
2023-03-31
Huang, Dapeng, Chen, Haoran, Wang, Kai, Chen, Chen, Han, Weili.  2022.  A Traceability Method for Bitcoin Transactions Based on Gateway Network Traffic Analysis. 2022 International Conference on Networking and Network Applications (NaNA). :176–183.
Cryptocurrencies like Bitcoin have become a popular weapon for illegal activities. They have the characteristics of decentralization and anonymity, which can effectively avoid the supervision of government departments. How to de-anonymize Bitcoin transactions is a crucial issue for regulatory and judicial investigation departments to supervise and combat crimes involving Bitcoin effectively. This paper aims to de-anonymize Bitcoin transactions and present a Bitcoin transaction traceability method based on Bitcoin network traffic analysis. According to the characteristics of the physical network that the Bitcoin network relies on, the Bitcoin network traffic is obtained at the physical convergence point of the local Bitcoin network. By analyzing the collected network traffic data, we realize the traceability of the input address of Bitcoin transactions and test the scheme in the distributed Bitcoin network environment. The experimental results show that this traceability mechanism is suitable for nodes connected to the Bitcoin network (except for VPN, Tor, etc.), and can obtain 47.5% recall rate and 70.4% precision rate, which are promising in practice.
2022-07-29
Zhang, KunSan, Chen, Chen, Lin, Nan, Zeng, Zhen, Fu, ShiChen.  2021.  Automatic patch installation method of operating system based on deep learning. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:1072—1075.
In order to improve the security and reliability of information system and reduce the risk of vulnerability intrusion and attack, an automatic patch installation method of operating systems based on deep learning is proposed, If the installation is successful, the basic information of the system will be returned to the visualization server. If the installation fails, it is recommended to upgrading manually and display it on the patch detection visualization server. Through the practical application of statistical analysis, the statistical results show that the proposed method is significantly better than the original and traditional installation methods, which can effectively avoid the problem of client repeated download, and greatly improve the success rate of patch automatic upgrades. It effectively saves the upgrade cost and ensures the security and reliability of the information system.
2022-03-15
Haowei, Liang, Chunyan, Hou, Jinsong, Wang, Chen, Chen.  2021.  Software Safety Verification Framework based on Predicate Abstraction. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1327—1332.
Program verification techniques have gained increasing popularity in academic and industrial circles during the last years. Predicate abstraction is a traditional and practical verification technique, which can solve the problem of state space explosion pretty well. Many software verification tools have implemented it. But these implementations are not user-friendly, or scalable. Aimed at these problems, we describe and implement a new automatic predicate abstraction framework, CChecker, for proving the safety of procedural programs with integer assignments. CChecker is a whole system composed of two parts: front and back end. The front end preprocesses and parses the source programs into logic models based on Clang. And the back end resolves the models based on Z3 to get software safety property. At last, the experiments show the potential of CChecker.
2022-03-01
Chen, Chen, Song, Li, Bo, Cao, Shuo, Wang.  2021.  A Support Vector Machine with Particle Swarm Optimization Grey Wolf Optimizer for Network Intrusion Detection. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :199–204.
Support Vector Machine (SVM) is a relatively novel classification technology, which has shown higher performance than traditional learning methods in many applications. Therefore, some security researchers have proposed an intrusion detection method based on SVM. However, the SVM algorithm is very sensitive to the choice of kernel function and parameter adjustment. Once the parameter selection is unscientific, it will lead to poor classification accuracy. To solve this problem, this paper presents a Grey Wolf Optimizer Algorithm based on Particle Swarm Optimization (PSOGWO) algorithm to improve the Intrusion Detection System (IDS) based on SVM. This method uses PSOGWO algorithm to optimize the parameters of SVM to improve the overall performance of intrusion detection based on SVM. The "optimal detection model" of SVM classifier is determined by the fusion of PSOGWO algorithm and SVM. The comparison experiments based on NSL-KDD dataset show that the intrusion detection method based on PSOGWO-SVM achieves the optimization of the parameters of SVM, and has improved significantly in terms of detection rate, convergence speed and model balance. This shows that the method has better performance for network intrusion detection.
2019-06-17
Cao, Gang, Chen, Chen, Jiang, Min.  2018.  A Scalable and Flexible Multi-User Semi-Quantum Secret Sharing. Proceedings of the 2Nd International Conference on Telecommunications and Communication Engineering. :28–32.

In this letter, we proposed a novel scheme for the realization of scalable and flexible semi-quantum secret sharing between a boss and multiple dynamic agent groups. In our scheme, the boss Alice can not only distribute her secret messages to multiple users, but also can dynamically adjust the number of users and user groups based on the actual situation. Furthermore, security analysis demonstrates that our protocol is secure against both external attack and participant attack. Compared with previous schemes, our protocol is more flexible and practical. In addition, since our protocol involving only single qubit measurement that greatly weakens the hardware requirements of each user.

2018-01-10
Chen, Chen, Tong, Hanghang, Xie, Lei, Ying, Lei, He, Qing.  2017.  Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective. ACM Trans. Knowl. Discov. Data. 11:42:1–42:26.
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model—multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can reveal unobserved dependencies with linear complexity. Moreover, we derive F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater-ZERO, an online variant of F\textbackslashtextlessscp;\textbackslashtextgreaterascinate\textbackslashtextless/scp;\textbackslashtextgreater that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
2017-07-24
Chen, Chen, Suciu, Darius, Sion, Radu.  2016.  POSTER: KXRay: Introspecting the Kernel for Rootkit Timing Footprints. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1781–1783.

Kernel rootkits often hide associated malicious processes by altering reported task struct information to upper layers and applications such as ps and top. Virtualized settings offer a unique opportunity to mitigate this behavior using dynamic virtual machine introspection (VMI). For known kernels, VMI can be deployed to search for kernel objects and identify them by using unique data structure "signatures". In existing work, VMI-detected data structure signatures are based on values and structural features which must be (often exactly) present in memory snapshots taken, for accurate detection. This features a certain brittleness and rootkits can escape detection by simply temporarily "un-tangling" the corresponding structures when not running. Here we introduce a new paradigm, that defeats such behavior by training for and observing signatures of timing access patterns to any and all kernel-mapped data regions, including objects that are not directly linked in the "official" list of tasks. The use of timing information in training detection signatures renders the defenses resistant to attacks that try to evade detection by removing their corresponding malicious processes before scans. KXRay successfully detected processes hidden by four traditional rootkits.

2015-05-01
Chen, Chen, Raj, Himanshu, Saroiu, Stefan, Wolman, Alec.  2014.  cTPM: A Cloud TPM for Cross-device Trusted Applications. Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation. :187–201.

Current Trusted Platform Modules (TPMs) are illsuited for cross-device scenarios in trusted mobile applications because they hinder the seamless sharing of data across multiple devices. This paper presents cTPM, an extension of the TPM's design that adds an additional root key to the TPM and shares that root key with the cloud. As a result, the cloud can create and share TPM-protected keys and data across multiple devices owned by one user. Further, the additional key lets the cTPM allocate cloud-backed remote storage so that each TPM can benefit from a trusted real-time clock and high-performance, non-volatile storage.

This paper shows that cTPM is practical, versatile, and easily applicable to trusted mobile applications. Our simple change to the TPM specification is viable because its fundamental concepts - a primary root key and off-chip, NV storage - are already found in the current specification, TPM 2.0. By avoiding a clean-slate redesign, we sidestep the difficult challenge of re-verifying the security properties of a new TPM design. We demonstrate cTPM's versatility with two case studies: extending Pasture with additional functionality, and reimplementing TrInc without the need for extra hardware.