Visible to the public Biblio

Filters: Keyword is power system vulnerability analysis  [Clear All Filters]
2022-07-29
Tahirovic, Alma Ademovic, Angeli, David, Strbac, Goran.  2021.  A Complex Network Approach to Power System Vulnerability Analysis based on Rebalance Based Flow Centrality. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
The study of networks is an extensively investigated field of research, with networks and network structure often encoding relationships describing certain systems or processes. Critical infrastructure is understood as being a structure whose failure or damage has considerable impact on safety, security and wellbeing of society, with power systems considered a classic example. The work presented in this paper builds on the long-lasting foundations of network and complex network theory, proposing an extension in form of rebalance based flow centrality for structural vulnerability assessment and critical component identification in adaptive network topologies. The proposed measure is applied to power system vulnerability analysis, with performance demonstrated on the IEEE 30-, 57- and 118-bus test system, outperforming relevant methods from the state-of-the-art. The proposed framework is deterministic (guaranteed), analytically obtained (interpretable) and generalizes well with changing network parameters, providing a complementary tool to power system vulnerability analysis and planning.
2017-11-27
Sayyadipour, S., Latify, M. A., Yousefi, G. R..  2016.  Vulnerability analysis of power systems during the scheduled maintenance of network facilities. 2016 Smart Grids Conference (SGC). :1–4.

This paper proposes a practical time-phased model to analyze the vulnerability of power systems over a time horizon, in which the scheduled maintenance of network facilities is considered. This model is deemed as an efficient tool that could be used by system operators to assess whether how their systems become vulnerable giving a set of scheduled facility outages. The final model is presented as a single level Mixed-Integer Linear Programming (MILP) problem solvable with commercially available software. Results attained based on the well-known IEEE 24-Bus Reliability Test System (RTS) appreciate the applicability of the model and highlight the necessity of considering the scheduled facility outages in assessing the vulnerability of a power system.