Biblio
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Multipath TCP (MP-TCP) has the potential to greatly improve application performance by using multiple paths transparently. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate our algorithm Balia (balanced linked adaptation), which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new algorithm to existing MP-TCP algorithms.
We consider the problem of robust on-line optimization of a class of continuous-time nonlinear systems by using a discrete-time controller/optimizer, interconnected with the plant in a sampled-data structure. In contrast to classic approaches where the controller is updated after a fixed sufficiently long waiting time has passed, we design an event-based mechanism that triggers the control action only when the rate of change of the output of the plant is sufficiently small. By using this event-based update rule, a significant improvement in the convergence rate of the closed-loop dynamics is achieved. Since the closed-loop system combines discrete-time and continuous-time dynamics, and in order to guarantee robustness and semi-continuous dependence of solutions on parameters and initial conditions, we use the framework of hybrid set-valued dynamical systems to analyze the stability properties of the system. Numerical simulations illustrate the results.
Game theory serves as a powerful tool for distributed optimization in multiagent systems in different applications. In this paper we consider multiagent systems that can be modeled as a potential game whose potential function coincides with a global objective function to be maximized. This approach renders the agents the strategic decision makers and the corresponding optimization problem the problem of learning an optimal equilibruim point in the designed game. In distinction from the existing works on the topic of payoff-based learning, we deal here with the systems where agents have neither memory nor ability for communication, and they base their decision only on the currently played action and the experienced payoff. Because of these restrictions, we use the methods of reinforcement learning, stochastic approximation, and learning automata extensively reviewed and analyzed in [3], [9]. These methods allow us to set up the agent dynamics that moves the game out of inefficient Nash equilibria and leads it close to an optimal one in both cases of discrete and continuous action sets.
A robust adaptive filtering algorithm based on the convex combination of two adaptive filters under the maximum correntropy criterion (MCC) is proposed. Compared with conventional minimum mean square error (MSE) criterion-based adaptive filtering algorithm, the MCC-based algorithm shows a better robustness against impulsive interference. However, its major drawback is the conflicting requirements between convergence speed and steady-state mean square error. In this letter, we use the convex combination method to overcome the tradeoff problem. Instead of minimizing the squared error to update the mixing parameter in conventional convex combination scheme, the method of maximizing the correntropy is introduced to make the proposed algorithm more robust against impulsive interference. Additionally, we report a novel weight transfer method to further improve the tracking performance. The good performance in terms of convergence rate and steady-state mean square error is demonstrated in plant identification scenarios that include impulsive interference and abrupt changes.
A new class of affine-projection-like (APL) adaptive-filtering algorithms is proposed. The new algorithms are obtained by eliminating the constraint of forcing the a posteriori error vector to zero in the affine-projection algorithm proposed by Ozeki and Umeda. In this way, direct or indirect inversion of the input signal matrix is not required and, consequently, the amount of computation required per iteration can be reduced. In addition, as demonstrated by extensive simulation results, the proposed algorithms offer reduced steady-state misalignment in system-identification, channel-equalization, and acoustic-echo-cancelation applications. A mean-square-error analysis of the proposed APL algorithms is also carried out and its accuracy is verified by using simulation results in a system-identification application.
The success of the IoT world requires service provision attributed with ubiquity, reliability, high-performance, efficiency, and scalability. In order to accomplish this attribution, future business and research vision is to merge the Cloud Computing and IoT concepts, i.e., enable an “Everything as a Service” model: specifically, a Cloud ecosystem, encompassing novel functionality and cognitive-IoT capabilities, will be provided. Hence the paper will describe an innovative IoT centric Cloud smart infrastructure addressing individual IoT and Cloud Computing challenges.
This paper proposes a novel wireless MAC-layer approach towards achieving channel access anonymity. Nodes autonomously select periodic TDMA-like time-slots for channel access by employing a novel channel sensing strategy, and they do so without explicitly sharing any identity information with other nodes in the network. An add-on hardware module for the proposed channel sensing has been developed and the proposed protocol has been implemented in Tinyos-2.x. Extensive evaluation has been done on a test-bed consisting of Mica2 hardware, where we have studied the protocol's functionality and convergence characteristics. The functionality results collected at a sniffer node using RSSI traces validate the syntax and semantics of the protocol. Experimentally evaluated convergence characteristics from the Tinyos test-bed were also found to be satisfactory.
Recent attention to aviation cyber physical systems (ACPS) is driven by the need for seamless integration of design disciplines that dominate physical world and cyber world convergence. System convergence is a big obstacle to good aviation cyber-physical system (ACPS) design, which is due to a lack of an adequate scientific theoretical foundation for the subject. The absence of a good understanding of the science of aviation system convergence is not due to neglect, but rather due to its difficulty. Most complex aviation system builders have abandoned any science or engineering discipline for system convergence they simply treat it as a management problem. Aviation System convergence is almost totally absent from software engineering and engineering curricula. Hence, system convergence is particularly challenging in ACPS where fundamentally different physical and computational design concerns intersect. In this paper, we propose an integrated approach to handle System convergence of aviation cyber physical systems based on multi-dimensions, multi-views, multi-paradigm and multiple tools. This model-integrated development approach addresses the development needs of cyber physical systems through the pervasive use of models, and physical world, cyber world can be specified and modeled together, cyber world and physical world can be converged entirely, and cyber world models and physical world model can be integrated seamlessly. The effectiveness of the approach is illustrated by means of one practical case study: specifying and modeling Aircraft Systems. In this paper, We specify and model Aviation Cyber-Physical Systems with integrating Modelica, Modelicaml and Architecture Analysis & Design Language (AADL), the physical world is modeled by Modelica and Modelicaml, the cyber part is modeled by AADL and Modelicaml.
This paper develops an opposition-based learning harmony search algorithm with mutation (OLHS-M) for solving global continuous optimization problems. The proposed method is different from the original harmony search (HS) in three aspects. Firstly, opposition-based learning technique is incorporated to the process of improvisation to enlarge the algorithm search space. Then, a new modified mutation strategy is instead of the original pitch adjustment operation of HS to further improve the search ability of HS. Effective self-adaptive strategy is presented to fine-tune the key control parameters (e.g. harmony memory consideration rate HMCR, and pitch adjustment rate PAR) to balance the local and global search in the evolution of the search process. Numerical results demonstrate that the proposed algorithm performs much better than the existing improved HS variants that reported in recent literature in terms of the solution quality and the stability.
This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.
We propose a distributed continuous-time algorithm to solve a network optimization problem where the global cost function is a strictly convex function composed of the sum of the local cost functions of the agents. We establish that our algorithm, when implemented over strongly connected and weight-balanced directed graph topologies, converges exponentially fast when the local cost functions are strongly convex and their gradients are globally Lipschitz. We also characterize the privacy preservation properties of our algorithm and extend the convergence guarantees to the case of time-varying, strongly connected, weight-balanced digraphs. When the network topology is a connected undirected graph, we show that exponential convergence is still preserved if the gradients of the strongly convex local cost functions are locally Lipschitz, while it is asymptotic if the local cost functions are convex. We also study discrete-time communication implementations. Specifically, we provide an upper bound on the stepsize of a synchronous periodic communication scheme that guarantees convergence over connected undirected graph topologies and, building on this result, design a centralized event-triggered implementation that is free of Zeno behavior. Simulations illustrate our results.
We propose a distributed continuous-time algorithm to solve a network optimization problem where the global cost function is a strictly convex function composed of the sum of the local cost functions of the agents. We establish that our algorithm, when implemented over strongly connected and weight-balanced directed graph topologies, converges exponentially fast when the local cost functions are strongly convex and their gradients are globally Lipschitz. We also characterize the privacy preservation properties of our algorithm and extend the convergence guarantees to the case of time-varying, strongly connected, weight-balanced digraphs. When the network topology is a connected undirected graph, we show that exponential convergence is still preserved if the gradients of the strongly convex local cost functions are locally Lipschitz, while it is asymptotic if the local cost functions are convex. We also study discrete-time communication implementations. Specifically, we provide an upper bound on the stepsize of a synchronous periodic communication scheme that guarantees convergence over connected undirected graph topologies and, building on this result, design a centralized event-triggered implementation that is free of Zeno behavior. Simulations illustrate our results.
Distributed optimization is an emerging research topic. Agents in the network solve the problem by exchanging information which depicts people's consideration on a optimization problem in real lives. In this paper, we introduce two algorithms in continuous-time to solve distributed optimization problems with equality constraints where the cost function is expressed as a sum of functions and where each function is associated to an agent. We firstly construct a continuous dynamic system by utilizing the Lagrangian function and then show that the algorithm is locally convergent and globally stable under certain conditions. Then, we modify the Lagrangian function and re-construct the dynamic system to prove that the new algorithm will be convergent under more relaxed conditions. At last, we present some simulations to prove our theoretical results.
- « first
- ‹ previous
- 1
- 2
- 3