Biblio
Mobile crowd sensing (MCS) is a rapidly developing technique for information collection from the users of mobile devices. This technique deals with participants' personal information such as their identities and locations, thus raising significant security and privacy concerns. Accordingly, anonymous authentication schemes have been widely considered for preserving participants' privacy in MCS. However, mobile devices are easy to lose and vulnerable to device capture attacks, which enables an attacker to extract the private authentication key of a mobile application and to further invade the user's privacy by linking sensed data with the user's identity. To address this issue, we have devised a special anonymous authentication scheme where the authentication request algorithm can be obfuscated into an unintelligible form and thus the authentication key is not explicitly used. This scheme not only achieves authenticity and unlinkability for participants, but also resists impersonation, replay, denial-of-service, man-in-the-middle, collusion, and insider attacks. The scheme's obfuscation algorithm is the first obfuscator for anonymous authentication, and it satisfies the average-case secure virtual black-box property. The scheme also supports batch verification of authentication requests for improving efficiency. Performance evaluations on a workstation and smart phones have indicated that our scheme works efficiently on various devices.
The Dark Web, a conglomerate of services hidden from search engines and regular users, is used by cyber criminals to offer all kinds of illegal services and goods. Multiple Dark Web offerings are highly relevant for the cyber security domain in anticipating and preventing attacks, such as information about zero-day exploits, stolen datasets with login information, or botnets available for hire. In this work, we analyze and discuss the challenges related to information gathering in the Dark Web for cyber security intelligence purposes. To facilitate information collection and the analysis of large amounts of unstructured data, we present BlackWidow, a highly automated modular system that monitors Dark Web services and fuses the collected data in a single analytics framework. BlackWidow relies on a Docker-based micro service architecture which permits the combination of both preexisting and customized machine learning tools. BlackWidow represents all extracted data and the corresponding relationships extracted from posts in a large knowledge graph, which is made available to its security analyst users for search and interactive visual exploration. Using BlackWidow, we conduct a study of seven popular services on the Deep and Dark Web across three different languages with almost 100,000 users. Within less than two days of monitoring time, BlackWidow managed to collect years of relevant information in the areas of cyber security and fraud monitoring. We show that BlackWidow can infer relationships between authors and forums and detect trends for cybersecurity-related topics. Finally, we discuss exemplary case studies surrounding leaked data and preparation for malicious activity.
Nowadays, honeypots are a key tool to attract attackers and study their activity. They help us in the tasks of evaluating attacker's behaviour, discovering new types of attacks, and collecting information and statistics associated with them. However, the gathered data cannot be directly interpreted, but must be analyzed to obtain useful information. In this paper, we present a SSH honeypot-based system designed to simulate a vulnerable server. Thus, we propose an approach for the classification of metrics from the data collected by the honeypot along 19 months.
Healthcare Internet of Things (HIoT) is transforming healthcare industry by providing large scale connectivity for medical devices, patients, physicians, clinical and nursing staff who use them and facilitate real-time monitoring based on the information gathered from the connected things. Heterogeneity and vastness of this network provide both opportunity and challenges for information collection and sharing. Patient-centric information such as health status and medical devices used by them must be protected to respect their safety and privacy, while healthcare knowledge should be shared in confidence by experts for healthcare innovation and timely treatment of patients. In this paper an overview of HIoT is given, emphasizing its characteristics to those of Big Data, and a security and privacy architecture is proposed for it. Context-sensitive role-based access control scheme is discussed to ensure that HIoT is reliable, provides data privacy, and achieves regulatory compliance.
In Energy Internet mode, a large number of alarm information is generated when equipment exception and multiple faults in large power grid, which seriously affects the information collection, fault analysis and delays the accident treatment for the monitors. To this point, this paper proposed a method for power grid monitoring to monitor and diagnose fault in real time, constructed the equipment fault logical model based on five section alarm information, built the standard fault information set, realized fault information optimization, fault equipment location, fault type diagnosis, false-report message and missing-report message analysis using matching algorithm. The validity and practicality of the proposed method by an actual case was verified, which can shorten the time of obtaining and analyzing fault information, accelerate the progress of accident treatment, ensure the safe and stable operation of power grid.
Attacks against websites are increasing rapidly with the expansion of web services. An increasing number of diversified web services make it difficult to prevent such attacks due to many known vulnerabilities in websites. To overcome this problem, it is necessary to collect the most recent attacks using decoy web honeypots and to implement countermeasures against malicious threats. Web honeypots collect not only malicious accesses by attackers but also benign accesses such as those by web search crawlers. Thus, it is essential to develop a means of automatically identifying malicious accesses from mixed collected data including both malicious and benign accesses. Specifically, detecting vulnerability scanning, which is a preliminary process, is important for preventing attacks. In this study, we focused on classification of accesses for web crawling and vulnerability scanning since these accesses are too similar to be identified. We propose a feature vector including features of collective accesses, e.g., intervals of request arrivals and the dispersion of source port numbers, obtained with multiple honeypots deployed in different networks for classification. Through evaluation using data collected from 37 honeypots in a real network, we show that features of collective accesses are advantageous for vulnerability scanning and crawler classification.